LECTURE ASSIGNMENT 1

Determine the eigenvalues λ_1 , λ_2 and the corresponding eigenvectors \mathbf{a}_1 , \mathbf{a}_2 of the 2×2 matrix **A**. Consider the possible (λ, \mathbf{a}) pairs giving solutions to linear equation system $(\mathbf{A} - \lambda \mathbf{I})\mathbf{a} = \mathbf{0}$ with

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -3 & 2 \end{bmatrix}, \quad \mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ and } \mathbf{a} = \begin{cases} a_1 \\ a_2 \end{cases}.$$

As the matrix needs to be singular for a non-zero solution to \mathbf{a} , the possible values of λ follow from the characteristic equation det($\mathbf{A} - \lambda \mathbf{I}$) = 0

$$\det \begin{bmatrix} 1-\lambda & 0\\ -3 & 2-\lambda \end{bmatrix} = (1-\lambda)(2-\lambda) = 0 \implies \lambda_1 = 1 \text{ or } \lambda_2 = 2.$$

Eigenvector **a** (non-zero) corresponding to a possible value of λ follows from $(\mathbf{A} - \lambda \mathbf{I})\mathbf{a} = 0$ when the value of λ is substituted there:

$$\lambda_{1} = 1 : \begin{bmatrix} 1-1 & 0 \\ -3 & 2-1 \end{bmatrix} \begin{Bmatrix} a_{1} \\ a_{2} \end{Bmatrix} = 0 \implies \mathbf{a}_{1} = \begin{Bmatrix} a_{1} \\ a_{2} \end{Bmatrix} = \begin{Bmatrix} 1 \\ 3 \end{Bmatrix}$$
$$\lambda_{2} = 2 : \begin{bmatrix} 1-2 & 0 \\ -3 & 2-2 \end{bmatrix} \begin{Bmatrix} a_{1} \\ a_{2} \end{Bmatrix} = 0 \implies \mathbf{a}_{2} = \begin{Bmatrix} a_{1} \\ a_{2} \end{Bmatrix} = \begin{Bmatrix} 0 \\ 1 \end{Bmatrix}$$

Hence, the eigenvalue-eigenvector pairs of **A** are given by

$$(\lambda, \mathbf{a})_1 = (1, \begin{cases} 1\\ 3 \end{cases}) \text{ and } (\lambda, \mathbf{a})_2 = (2, \begin{cases} 0\\ 1 \end{cases}).$$