Mathematics for Economists
Aalto BIZ
Spring 2021
Juuso Välimäki

Elementary analysis

The goal of these notes is to find sufficient conditions for the existence of a solution to constrained optimization problems in \mathbb{R}^{n}. We start by considering the notions of distance, convergence and continuity in a bit more detail.

Length and distance in \mathbb{R}^{n}

The only spaces that we will be interested in these notes are the various Cartesian products of the real line \mathbb{R} denoted by \mathbb{R}^{n}. The exponent n is also called the dimension of the Euclidean space. Hence an element $\boldsymbol{x} \in \mathbb{R}^{n}$ is an ordered n-tuple $\left(x_{1}, \ldots, x_{n}\right)$ where each $x_{i} \in \mathbb{R}$.

Distance $d(\boldsymbol{x}, \boldsymbol{y})$ between two vectors $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$ is usually based on the Euclidean norm or the length of a vector in $\boldsymbol{x} \in \mathbb{R}^{n}$ defined by

$$
\begin{equation*}
\|\boldsymbol{x}\|=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \tag{1}
\end{equation*}
$$

This is just the generalization of the Pythagorean theorem to an arbitrary dimension. A distance for \mathbb{R}^{n} can be derived from this norm as

$$
d(\boldsymbol{x}, \boldsymbol{y})=\|\boldsymbol{x}-\boldsymbol{y}\| .
$$

Proposition 1. Let \boldsymbol{x} and \boldsymbol{y} denote points in \mathbb{R}^{n}. Then we have:
(a) $\|\boldsymbol{x}\| \geq 0$ and $\|\boldsymbol{x}\|=0$ if and only if $\boldsymbol{x}=\mathbf{0}$,
(b) $\|a \boldsymbol{x}\|=a\|\boldsymbol{x}\|$ for every real a,
(c) $\|\boldsymbol{x}-\boldsymbol{y}\|=\|\boldsymbol{y}-\boldsymbol{x}\|$,
(d) $\boldsymbol{x} \cdot \boldsymbol{y} \leq\|\boldsymbol{x}\|\|\boldsymbol{y}\| \quad$ (Cauchy-Schwarz inequality),
(e) $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\| \quad$ (Triangle inequality).

Remark 1. To see why the Cauchy-Schwarz inequality is true, consider the sum of squares

$$
\sum_{i=1}^{n}\left(x_{i}+t y_{i}\right)^{2} .
$$

This is a quadratic polynomial in t, and as a sum of squares, it is also nonnegative. Hence its discriminant is non-positive, i.e.

$$
\left(2 \sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq 4\left(\sum_{i=1}^{n} x_{i}^{2} \sum_{i=1}^{n} y_{i}^{2}\right)
$$

Dividing both sides by 4 and taking square roots on both sides gives Cauchy-Schwarz inequality.

This simple inequality is one of the most important results in all of mathematics. Equality holds if and only if $\boldsymbol{x}=\lambda \boldsymbol{y}$, i.e. \boldsymbol{x} is proportional to \boldsymbol{y}. We have used this observation to argue that the gradient $\nabla f(\hat{\boldsymbol{x}})$ gives the direction of steepest ascent for a function f at point $\hat{\boldsymbol{x}}$.

From Cauchy-Schwarz, we get easily the triangle inequality:

$$
\begin{gathered}
\|\boldsymbol{x}+\boldsymbol{y}\|^{2}=(\boldsymbol{x}+\boldsymbol{y}) \cdot(\boldsymbol{x}+\boldsymbol{y})=\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2 \boldsymbol{x} \cdot \boldsymbol{y} \\
\leq\|\boldsymbol{x}\|^{2}+\|\boldsymbol{y}\|^{2}+2\|\boldsymbol{x}\|\|\boldsymbol{y}\|=(\|\boldsymbol{x}\|+\|\boldsymbol{y}\|)^{2} .
\end{gathered}
$$

The triangle inequality follows by taking square roots on both sides of the inequality. The inequality in the above expression results from CauchySchwarz inequality.

Exercise In general, any function $\hat{d}(\boldsymbol{x}, \boldsymbol{y})$ satisfying (a), (c) and (e) in the above list is a distance. It is a good exercise to show that $\hat{d}(x, y):=$ $\max _{i}\left|x_{i}-y_{i}\right|$ is a distance in this sense. Are all the other properties above also satisfied by this distance?

By the segment (a, b) we mean the set of all real number x such that $a<x<b$. By the interval $[a, b]$, we mean the set of all real numbers such that $a \leq x \leq b$.

For $\boldsymbol{x} \in \mathbb{R}^{n}$, we define analogs of intervals as follows. If $a_{i}<b_{i}$ for $i=1, \ldots, n$, the set of all points $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} whose coordinates satisfy $a_{i} \leq x_{i} \leq b_{i}$ for $(1 \leq i \leq n)$, is called an n-cell. If $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\varepsilon>0$, the open (or closed) neighborhood $B^{\varepsilon}(\boldsymbol{x})$ with center at \boldsymbol{x} and radius ε is defined to be the set of all $\boldsymbol{y} \in \mathbb{R}^{n}$, such that $\|\boldsymbol{y}-\boldsymbol{x}\|<(\leq) \varepsilon$.

Open and closed sets

Definition 1. A point x is a limit point of the set $E \subset \mathbb{R}^{n}$ if every neighborhood of x contains a point $\boldsymbol{y} \in E$ with $\boldsymbol{y} \neq \boldsymbol{x}$.

We say that E is closed if every limit point of E is an element of E. A point \boldsymbol{x} is an interior point of E if there is a neighborhood $B^{\varepsilon}(\boldsymbol{x})$ of \boldsymbol{x} such that $B^{\varepsilon}(\boldsymbol{x}) \subset E$. We say that E is open if every point of E is an interior point.

The complement of E, denoted by E^{c} is the set of all points $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $x \notin E$.

The set E is bounded if there is a real number M such that $\|\boldsymbol{x}\|<M$ for all $x \in E$.

Exercise Is the empty set open or closed? Show that $A=\{x: a<x<$ $b\}$ is an open set and that $A=\{x: a \leq x \leq b\}$ is a closed set. Show that the set $\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}$ is neither open nor closed (hint: is 0 a limit point? Is it in the set?)

Proposition 2. A set $E \subset \mathbb{R}^{n}$ is open if and only if its complement is closed. A set $F \subset \mathbb{R}^{n}$ is closed if and only if its complement is open.

A very important property for sets in mathematical analysis is called compactness. We give here a definition of compactness for sets in \mathbb{R}^{n} that should really be derived as a theorem (Heine-Borel Theorem) starting from a more fundamental notion, but for practical matters, this is all we need.

Definition 2 (Compact sets). A set $E \subset \mathbb{R}^{n}$ is called compact if it is closed and bounded.

Sequences and subsequences

Definition 3. If S is any set, a sequence in S is a function whose domain is the set $\mathbb{N}=\{1,2,3, \ldots\}$ of natural numbers and whose range is in S.

Definition 4. A sequence $\left\{\boldsymbol{x}_{n}\right\}$ in \mathbb{R}^{n} is said to converge if there is a point $\boldsymbol{x} \in \mathbb{R}^{n}$ with the following property: For every $\epsilon>0$, there is an integer N such that $n \geq N$ implies that $d\left(\boldsymbol{x}_{n}, \boldsymbol{x}\right)<\epsilon$.

We say that \boldsymbol{x}_{n} converges to $\boldsymbol{x}, \boldsymbol{x}$ is the limit of $\left\{\boldsymbol{x}_{n}\right\}$ and we write $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x}$,

$$
\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}=\boldsymbol{x}
$$

Theorem 1. Let $\left\{\boldsymbol{x}_{n}\right\}$ be a sequence in \mathbb{R}^{n}.
(i) $\left\{\boldsymbol{x}_{n}\right\}$ converges to $\boldsymbol{x} \in \mathbb{R}^{n}$ if and only if every neighborhood of \boldsymbol{x} contains all but finitely many of the terms of $\left\{x_{n}\right\}$.
(ii) If $\boldsymbol{x} \in \mathbb{R}^{n}, x^{\prime} \in \mathbb{R}^{n}$, and if $\left\{\boldsymbol{x}_{n}\right\}$ converges to \boldsymbol{x} and to \boldsymbol{x}^{\prime}, then $\boldsymbol{x}=\boldsymbol{x}^{\prime}$.
(iii) If $\left\{\boldsymbol{x}_{n}\right\}$ converges, then $\left\{\boldsymbol{x}_{n}\right\}$ is bounded.
(iv) If $E \subset \mathbb{R}^{n}$ and \boldsymbol{x} is a limit point of E, then there is a sequence $\left\{\boldsymbol{x}_{n} \neq \boldsymbol{x}\right\}$ in E such that $\boldsymbol{x}=\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}$.
$(v) \boldsymbol{x}_{n}=\left(x_{1, n}, \ldots, x_{k, n}\right) \rightarrow \boldsymbol{x}=\left(x_{1}, \ldots, x_{k}\right) \Leftrightarrow x_{i, n} \rightarrow x_{i}$ for all $i \in$ $\{1, \ldots, k\}$.

The last part of the proposition claims that a sequence of vectors converges if and only if all of its coordinates converge.
Definition 5. Given a sequence $\left\{\boldsymbol{x}_{n}\right\}$, consider an infinite sequence $\left\{n_{k}\right\}$ of positive integers, such that $n_{1}<n_{2}<\cdots$. Then the sequence $\left\{\boldsymbol{x}_{n_{i}}\right\}$ is called a subsequence of $\left\{\boldsymbol{x}_{n}\right\}$. If $\left\{\boldsymbol{x}_{n_{i}}\right\}$ converges, its limit is called a subsequential limit of $\left\{\boldsymbol{x}_{n}\right\}$.

Exercise Show that if $\left\{\boldsymbol{x}_{n}\right\}$ converges to x, then all of its subsequences also converge to \boldsymbol{x}.

Definition 6. A sequence $\left\{\boldsymbol{x}_{n}\right\}$ is said to be a Cauchy sequence if for every $\epsilon>0$ there is an integer N such that $d\left(\boldsymbol{x}_{n}, \boldsymbol{x}_{m}\right)<\epsilon$, if $n \geq N$ and $m \geq N$.

Real numbers are constructed in such a way that Cauchy sequences in \mathbb{R} converge, i.e. have limits in \mathbb{R}. By part (v) of the previous theorem, the same is true for real vectors.

Theorem 2. Every bounded subset $E \subset \mathbb{R}^{n}$ with infinitely many elements has a limit point in \mathbb{R}^{n}.

Idea of proof for \mathbb{R} : Since E is bounded, it is contained in an interval $[-M, M]$ of length $2 M$ for some $M<\infty$. Since E has infinitely many elements, either $[-M, 0]$ or $[0, M]$ or both have infinitely many elements. Hence some interval of length M also contains infinitely many elements of E. Continue this process of halving the interval to show that you can come up with a sequence of intervals of length $2^{-k} M$ containing infinitely many elements of E. The midpoints of the sequences form a Cauchy sequence and hence they converge to a point $x \in \mathbb{R}$. This x is a limit point of E. The same construction generalizes easily to \mathbb{R}^{n}

An immediate consequence of this is the following theorem.

Theorem 3. (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R}^{n} contains a convergent subsequence and every sequence in a compact set $E \in \mathbb{R}^{n}$ has a convergent subsequence whose limit is in E.

Continuous functions

Definition 7. Consider a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. We write $f(\boldsymbol{x}) \rightarrow \hat{\boldsymbol{y}}$ as $\boldsymbol{x} \rightarrow \hat{\boldsymbol{x}}$, or

$$
\begin{equation*}
\lim _{\boldsymbol{x} \rightarrow \hat{\boldsymbol{x}}} f(\boldsymbol{x})=\hat{\boldsymbol{y}}, \tag{2}
\end{equation*}
$$

if there is a point $\boldsymbol{y} \in \mathbb{R}^{m}$ with the following property: For every $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\boldsymbol{x} \in B^{\delta}(\hat{\boldsymbol{x}}) \Rightarrow f(\boldsymbol{x}) \in B^{\varepsilon}(\hat{\boldsymbol{y}}) .
$$

We say that f is continuous at $\hat{\boldsymbol{x}}$ if for all $\varepsilon>0$ there exists a $\delta>0$ such that

$$
\boldsymbol{x} \in B^{\delta}(\hat{\boldsymbol{x}}) \Rightarrow f(\boldsymbol{x}) \in B^{\varepsilon}(f(\hat{\boldsymbol{x}})) .
$$

Another way of writing this is given in the following simple proposition.

Proposition 3. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuous at $\hat{\boldsymbol{x}}$ if for every sequence $\left\{\boldsymbol{x}_{n}\right\}$ that converges to $\hat{\boldsymbol{x}}$, the sequence $\left\{f\left(\boldsymbol{x}_{n}\right)\right\}$ converges to $f(\hat{\boldsymbol{x}})$; in symbols,

$$
\lim _{n \rightarrow \infty} f\left(\boldsymbol{x}_{n}\right)=f\left(\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}\right) .
$$

A function is said to be continuous if it is continuous at all points in its domain. Continuity of a function f at a point $\hat{\boldsymbol{x}}$ is called a local property of f because it depends on the behavior of f only in the immediate vicinity of $\hat{\boldsymbol{x}}$. A property of f which concerns the whole domain of f is called a global property. Thus, continuity of f on its domain is a global property.

The following proposition gives yet another way of looking at continuity.

Proposition 4. A function f is continuous if and only if the inverse image $f^{-1}(V)$ is open (closed) for every open (closed) set V in Y .

Proposition 5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ be continuous functions, and let h be the composite function defined by

$$
h(\boldsymbol{x})=g(f(\boldsymbol{x})) \quad \text { for } \boldsymbol{x} \in \mathbb{R}^{n} .
$$

If \mathbf{f} is continuous at $\hat{\boldsymbol{x}}$ and if \mathbf{g} is continuous at $f(\hat{\boldsymbol{x}})$, then h is continuous at $\hat{\boldsymbol{x}}$.

Global properties of continuous functions

Definition 8. A function $f: E \rightarrow \mathbb{R}$ is said to be bounded if there is a real number M such that $|f(\boldsymbol{x})| \leq M$ for all $\boldsymbol{x} \in E$.

Recall the definition of the least upper bound and greatest lower bound for a set A of real numbers. We say that \bar{a} is the least upper bound of A if for all $x \in A, x \leq \bar{a}$ and for all $a^{\prime}<\bar{a}$, there is some $x \in A$ such that $x>a^{\prime}$. Similarly, we say that \underline{a} is the greatest lower bound of A if for all $x \in A$, $x \geq \underline{a}$ and for all $a^{\prime}>\underline{a}$, there is some $x \in A$ such that $x<a^{\prime}$.

We write:

$$
\bar{a}:=\sup A, \underline{a}:=\inf A .
$$

Theorem 4 (Weierstrass' Theorem). Suppose f is a continuous function on a compact set E, and

$$
M=\sup _{\boldsymbol{x} \in E} f(\boldsymbol{x}), \quad m=\inf _{\boldsymbol{x} \in E} f(\boldsymbol{x}) .
$$

Then there exists a point $\overline{\boldsymbol{x}}$, and $\underline{\boldsymbol{x}} \in E$ such that $f(\overline{\boldsymbol{x}})=M$ and $f(\underline{\boldsymbol{x}})=m$.
Proof. We show this for the supremum. The case for the infimum is analogous. Let $M=\sup _{\boldsymbol{x} \in E} f(\boldsymbol{x})$. Let $\left\{M_{n}\right\} \rightarrow M$ with $M_{n}<M$ for all n. By the definition of the supremum, there exists a sequence $\left\{\boldsymbol{x}_{n}\right\} \in E$ with $x_{n} \geq M_{n}$. Since E is compact, $\left\{\boldsymbol{x}_{n}\right\}$ has a convergent subsequence $\left\{\boldsymbol{x}_{n_{k}}\right\} \rightarrow x \in E$. Since $\left\{M_{n}\right\} \rightarrow M$, we also know that $\left\{M_{n_{k}}\right\} \rightarrow M$. By continuity of f,

$$
M \geq f(\boldsymbol{x})=\lim f\left(\boldsymbol{x}_{n_{k}}\right) \geq \lim M_{n_{k}}=M
$$

This theorem ensures that our maximization and minimization problems have solutions as long as the objective function is continuous and the feasible set is compact.

Remark 2. To see that E must be closed and bounded and that f has to be continuous, consider the following examples where a single hypothesis (in brackets) of the theorem fails:

1. $f(x)=x$ and $E=\mathbb{R}$ (domain not bounded).
2. $f(x)=x$ and $E=\{x: 0<x<1\}$ (domain not closed).
3. $f(x)=x$ for $0 \leq x<1, f(1)=0$ and $E=\{x: 0 \leq x \leq 1\}$ (f not continuous).

Here are two more useful results. The first is a generalization of Weierstrass' theorem, the second is a generalization of the intermediate value theorem for functions of a single real variable.

Proposition 6. Let $f: X \rightarrow Y$ be a continuous function. the image $f(E)$ of any compact set $E \subset X$ is compact.

Proposition 7. Let $f: X \rightarrow Y$ be a continuous function. the image $f(E)$ of any connected set $E \subset X$ is connected.

Intervals (including the entire real line and the empty set) are the only connected sets on \mathbb{R}. It is surprisingly hard to give a general and easily verified definition of connected sets in \mathbb{R}^{n}, but for many applications of this theorem, it is enough to note that convex sets in \mathbb{R}^{n} for any n are connected.

