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Examples of constrained optimization (optional)

Optimization with equality constraints

Geometric mean vs. arithmetic mean

One key result in mathematics says that for positive numbers x1, ..., xn > 0,
their arithmetic mean, AM(x) = 1

n

∑n
i=1 xi is at least as large as their ge-

ometric mean, GM(x) =
∏

i x
1
n
i . One way to prove this is via constrained

optimization.
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subject to
1

n

n∑
i=1

xi = x̄.

Weierstrass’ theorem guarantees that a maximum exists since the fea-
sible set is bounded (maxi xi ≤ nx̄) and closed (determined by an equality
and non-negativity constraints), and the objective function is continuous.
Since the objective function is at its minimum at xi = 0 for some i, we can
ignore the non-negativity constraints since the optimum is always at an
interior point xi > 0 for all i.

The Lagrangean for this problem is:

L(x, µ) = x
1
n
1 x

1
n
2 . . . x

1
n
n − µ(

1

n

n∑
i=1

xi − x̄).

Let ŷ = x̂
1
n
1 x̂

1
n
2 . . . x̂

1
n
n . Then we can write the first-order conditions for

the critical points of the Lagrangean as:

∂L(x̂, µ̂)

∂xi
=

1

n

ŷ

x̂i
− µ̂ 1

n
= 0 for all i,
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∂L(x̂, µ̂)

∂µ
=

1

n

n∑
i=1

xi − x̄ = 0.

The first-order conditions with respect to xi, xj imply that

1

n

ŷ

x̂i
= µ̂

1

n
=

1

n

ŷ

x̂j
,

and therefore, x̂i = x̂j for all i, j and substituting into the constraint, we
get

x̂i = x̄ for all i.

Perhaps the easiest way to see that the critical point is a minimum, is
to notice that it is the only point satisfying the necessary conditions for
a maximum and Weierstrass’ theorem guarantees that a maximum exists.
Therefore, the critical point must be the maximum.

We conclude that for all (x1, ..., xn) such that 1
n

∑n
i=1 xi = x̄, we have:

GM(x) = x
1
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1 x
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2 . . . x
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n ≤ x̄

1
n x̄
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n . . . x̄

1
n = x̄ = AM(x).

This result generalizes to weighted averages. For α = (α1, ..., αn) with
αi ≥ 0 for all i and

∑n
i=1 αi = 1, we say that α · x is a weighted average

x̄(α) of (x1, ..., xn). I claim that for all positive x,∏
i

xαii ≤ α · x.

To see this, note first that x̂ maximizes f(x) in F if and only if it maxi-
mizes g(f(x)) in F . Therefore consider, the auxiliary maximization prob-
lem:

max
x

n∑
i=1

αi lnxi

subject to
n∑
i=1

xiαi = x̄(α).

The Lagrangean is:

L(x, µ) =
n∑
i=1

αi lnxi − µ(
∑
i=1

xiαi − x̄(α)).
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The first-order conditions are:

∂L(x̂, µ̂)

∂xi
=
αi
x̂i
− µ̂αi = 0 for all i,

∂L(x̂, µ̂)

∂µ
=

∑
i=1

xiαi − x̄(α) = 0.

As before, we get that at optimum, xi = x̄(α) for all i and at optimum,
the weighted average coincides with the weighted geometric mean. Since∑n

i=1 αi lnxi has a negative definite Hessian matrix, we have proved the
claim.

Notice that the maximization problem here is exactly the same as in
maximizing a Cobb-Douglas utility function for prices given by the con-
sumption weights αi in the utility function.

One can also define f(x; ρ) = (
∑n

i=1 xiρ)
1
ρ to be the ρth power mean of

x. Note that f(x, 1) = AM(x). In Problem Set 1, you were asked to show

that f(x; ρ) →
∏

i x
1
n
i = GM(x) as ρ → 0. You can show as an exercise

using the approach above that for ρ < 1, we have: f(x; ρ) ≤ AM(x) for
all x, and equality holds only if and only if (xi = AM(x) = f(x, 1) for all
i. Amongst other things, one can also show that f(x; ρ) is increasing in ρ.
You can also show that for ρ > 1, the maximum value of f(x; ρ) on the
feasible set

F = {x ≥ 0 | 1

n

n∑
i=1

xi = x̄}

is obtained at any corner point xi = nx̄ for some i and xj = 0 for j 6= i.

Quadratic optimization and eigenvalues of symmetric matrices

Consider the problem of maximizing the quadratic form x·Ax in Rn (recall
that A is required to be symmetric) by choosing a vector x ∈ Rn subject
to the constraint that ‖x‖ = 1, i.e. that the vector has unit length. Since
the feasible set F = {x ∈ Rn : ‖x‖ = 1} is a compact set and quadratic
forms are continuous, Weierstrass’ theorem guarantees that a maximum
exists.Write this problem as:

max
x
x ·Ax
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subject to x · x− 1 = 0.

Form the Lagrangean:

L(x, µ) = x ·Ax− µ(x · x− 1).

First-order conditions (from quadratic optimization):

∇xL(x̂, µ̂) = 2Ax̂− 2µ̂x̂ = 0.

∂L(x̂, µ̂)

∂µ
= x̂ · x̂− 1 = 0.

First-order conditions with respect to x show that the solution vector
is an eigenvector of A and µ is an eigenvalue. This shows that symmetric
matrices have a real eigenvector and a real eigenvalue. Let v1 denote this
eigenvector and µ1 denote the eigenvalue. We also get that the optimized
value is µ1 since:

v1 ·Av1 = µ1v1 · v1 = µ1.

We want to prove by induction that A has n orthogonal eigenvectors
and that all its eigenvalues are real. Suppose then that we have v1, ...vk

orthogonal eigenvectors and µ1, ..., µk real eigenvalues and consider next:

max
xk+1

xk+1 ·Axk+1

subject to xk+1 · xk+1 = 1,

and xk+1 · vi = 0 for all i ∈ {1, ..., k}.
Again, a solution exists (by Weierstrass theorem). We want to show

that the solution xk+1 is an eigenvector of A and the Lagrange multi-
plier µk+1 = xk+1Axk+1 is the corresponding eigenvalue. The gradients
of the constraints (xk+1, v1, ..., vk) are linearly independent by construc-
tion. Therefore Lagrange’s theorem implies that there exist multipliers
µk+1, λ1, ..., λk such that

2Axk+1 − 2µk+1xk+1 −
k∑
i=1

λivi = 0. (1)

To show the result, we show first that vi ·Axk+1 = 0 for all i ∈ {1, ..., k}.
By induction hypothesis,Avi = λivi, so that (sinceA is symmetric):

vi ·Axk+1 = xk+1 ·Avi = λixk+1 · vi = 0.
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Hence the first two terms in (1) are orthogonal to the terms in the sum.
If two orthogonal vectors sum to zero, they must both be zero. To see this,
if x+y = 0 then (x+y) · (x+y) = x ·x+y ·y+ 2x ·y = 0, but if x ·y = 0,
this implies that x = y = 0. This means that we must have:

2Axk+1 = 2µk+1xk+1,

and (µk+1,xk+1) is indeed an eigenpair ofA as required.
Multiplying (1) from the left by (xk+1)> gives xk+1 ·Axk+1 = µk+1.
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