Mathematics for Economists: Lecture 7

Juuso Välimäki

Aalto University School of Business
Spring 2021

三

This lecture covers

1. Existence of solutions to optimization problems
2. Simplest constrained optimization
3. Optimization subject to an equality constraint: first-order conditions
4. Examples of equality constrained optimization problems

Existence of optimal choices: why care?

Example (1 is the largest natural number)

Proof.

- Denote the largest natural number (i.e. strictly positive integer) by x.
- Since x is a natural number, also x^{2} is a natural number.
- Since x is the largest natural number, we have:

$$
x \geq x^{2}
$$

- Dividing both sides by x (a positive number since it is a natural number), we get

$$
1 \geq x
$$

- Since all natural numbers are larger than or equal to 1 , the claim follows.
- Where is the mistake?

Existence helps the characterization

- Suppose that you know that a problem has a solution
- Suppose you know that a single point satisfies first-order necessary conditions
- Do you need to worry about second-order conditions at the critical point?
- Hence it is important to find general enough conditions that guarantee the existence of a solution
- Weierstrass' theorem is pretty good at this

Existence of optimal choices

- You need to check conditions

1. On the domain (feasible set) of the problem
2. On the objective function

- Feasible set F bounded

1. Can you fit the feasible set in a large enough box of finite size?
2. If $F \in \mathbb{R}^{n}$, show that $F \subset[-M, M]^{n}$ for some $M<\infty$.
3. E.g. $F=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{p} \cdot \boldsymbol{x} \leq w, \boldsymbol{x} \geq 0\right\}$ for some strictly positive price vector \boldsymbol{p} satisfies $x_{i} \leq \frac{w}{\min _{i} p_{i}}$ for all i.

- Feasible set F closed

1. If $\boldsymbol{x}_{n} \rightarrow \boldsymbol{x}$ and $\boldsymbol{x}_{n} \in F$ for all n, then $\boldsymbol{x} \in F$.
2. Constraint given by continuous functions $F=\{\boldsymbol{x} \mid g(\boldsymbol{x}) \leq 0\}$ for a continuous $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$.
3. $F=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{p} \cdot \boldsymbol{x} \leq w, \boldsymbol{x} \geq 0\right\}$ satisfies this.

Existence of optimal choices

- Objective function continuous

1. Almost all functions you will encounter in economics are continuous
2. Utility functions, cost functions etc.
3. Failure of continuity: demand for price setting firms where all buyers buy from the firm with the lowest price.

- A set $F \subset \mathbb{R}^{n}$ is called compact if it is closed and bounded.
- Once we recall that all sets in \mathbb{R} have a greatest lower bound (infimum) and a lowest upper bound (supremum), we are ready for the main existence result, Weierstrass theorem

Main existence theorem

Theorem (Weierstrass' Theorem)

Suppose f is a continuous function on a compact set F, and

$$
M=\sup _{x \in F} f(x), \quad m=\inf _{x \in F} f(x) .
$$

Then there exist points $\bar{x}, \underline{x} \in F$ such that $f(\bar{x})=M$ and $f(\underline{x})=m$.

Weierstrass' theorem

Remark

To see that F must be closed and bounded and that f has to be continuous, consider the following examples where one property fails in each case:

1. $f(x)=x$ and $F=\mathbb{R}$ (F not bounded).
2. $f(x)=x$ and $F=\{x: 0<x<1\}$. (F not closed).
3. $f(x)=x$ for $0 \leq x<1, f(1)=0$ and $E=\{x: 0 \leq x \leq 1\}$ (f not continuous).

Constrained Optimization: Example

We start with a simplest example of constrained optimization to set up expectations for the more general case to follow.

Example

Consider finding the maximum for $f(x)=3+2 x-x^{2}$ on the feasible set $F=\{x:-\infty<a \leq x \leq b<\infty$.
Since f is continuous and the feasible set F is compact. Therefore Weierstrass' theorem guarantees the existence of a maximizer, i.e. an $x \in F$ such that for all $y \in F$, we have $f(x) \geq f(y)$.
Notice that f is strictly increasing for $x<1$ and strictly decreasing for $x>1$. If $a \leq 1 \leq b$, then the function is maximized at its critical point $x=1$. We say that a direction $\left(x-x_{0}\right)$ is feasible from $x_{0} \in F$ if for a small Δ, we have $x_{0}+\Delta \in F$.

Quadratic function on an interval

Constrained Optimization: Example continued

Linear approximation by the derivative gives:

$$
f\left(x_{0}+\Delta\right)-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \Delta
$$

If we have a maximum at x_{0}, then for all feasible direction

$$
f^{\prime}\left(x_{0}\right) \Delta \leq 0
$$

- If $a<x_{0}<b$, then we must have $f^{\prime}\left(x_{0}\right)=0$ since both directions $\Delta>0, \Delta<0$ are feasible.
- If $f^{\prime}\left(x_{0}\right)>0$, then $x>x_{0}$ cannot be feasible if x_{0} is a maximum. Therefore $x_{0}=b$ if x_{0} is the optimal choice and $f^{\prime}\left(x_{0}\right)>0$. Similarly, if $f^{\prime}\left(x_{0}\right)<0$ and x_{0} is the optimum, then $x_{0}=a$.

Example: Consumer's problem

- A consumer chooses how to spend her wealth w on two goods x_{1}, x_{2} whose prices are p_{1}, p_{2}.
- Continuously differentiable utility, strictly positive marginal utility for both goods.
- The feasible set (budget set) $\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2} \geq 0, p_{1} x_{1}+p_{2} x_{2} \leq w\right\}$ is closed (since it is defined by weak inequalities for a continuous constraint function).
- By Weierstrass theorem, a utility maximizing choice exists. What can we say about it?
- Budget constraint must bind: if $p_{1} \hat{x}_{1}+p_{2} \hat{x}_{2}<w$, then $\left(\hat{x}_{1}+h, \hat{x}_{2}\right)$ is feasible and:

$$
u\left(\hat{x}_{1}+h, \hat{x}_{2}\right)>u\left(\hat{x}_{1}, \hat{x}_{2}\right) .
$$

- Therefore, we must have $p_{1} \hat{x}_{1}+p_{2} \hat{x}_{2}=w$.
- Can the indifference curve through the optimum intersect the budget line?

Optimization with a single equality constraint

- Local considerations: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the objective function to be maximized
- Suppose the constraints take the form $g(x)=g\left(x_{1}, \ldots, x_{n}\right)=0$.
- In other words, $F=\{x: g(x)=0\}$. We write the maximization problem often as:

$$
\begin{gathered}
\max _{x} f(x) \\
\text { subject to } g(x)=0 .
\end{gathered}
$$

Optimization with a single equality constraint

- A solution to this problem finds point $\hat{\boldsymbol{x}}$ such that $f(\hat{\boldsymbol{x}}) \geq f(\boldsymbol{x})$ for all $\boldsymbol{x} \in F$.
- What can we say about such an $\hat{\boldsymbol{x}}$?
- At this point, we do not know if it exists. If it exists, and f is differentiable, then for small Δ,

$$
f(\hat{\boldsymbol{x}}+\Delta(\boldsymbol{x}-\hat{\boldsymbol{x}}))-f(\hat{\boldsymbol{x}})=D f(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}}) \Delta \leq 0
$$

for all feasible directions ($\boldsymbol{x}-\hat{\boldsymbol{x}}$).

- But how do we know which directions are feasible?

Optimization with a single equality constraint

- Assume that the function g defining the constraint is also differentiable.
- To find the feasible directions, we go back to implicit function theorem.
- If $\hat{x} \in F$ and $\frac{\partial g}{\partial x_{i}}(\hat{\boldsymbol{x}}) \neq 0$ for some $i \in\{1, \ldots, n\}$, then we can find a write $x_{i}=h\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)=: h\left(\boldsymbol{x}_{-i}\right)$ in a neighborhood of $\hat{\boldsymbol{x}}_{-i}$ so that

$$
g\left(h\left(\boldsymbol{x}_{-i}\right), \boldsymbol{x}_{-i}\right)=0
$$

- Notice that it is not possible to use the implicit function theorem at a critical point of the constraint function.
- Therefore, we must assume that $D g(\hat{\boldsymbol{x}}) \neq 0$.
- We call this the constraint qualification and we will see different versions of this in more complex situations with multiple constraints.

Optimization with a single equality constraint

- Since the function g is at constant value in the feasible set, we have for all feasible directions $(\boldsymbol{x}-\hat{\boldsymbol{x}})$:

$$
\nabla g(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})=0
$$

- Notice also that if $(\boldsymbol{x}-\hat{\boldsymbol{x}})$ is feasible, then also $-(\boldsymbol{x}-\hat{\boldsymbol{x}})$ is feasible. From the linear approximation above, this means that for all feasible directions,

$$
\operatorname{Df}(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})=0
$$

- But therefore we have shown that at optimum $\hat{\boldsymbol{x}}$,

$$
\nabla f(\hat{\boldsymbol{x}})=\mu \nabla g(\hat{\boldsymbol{x}})
$$

- We have the following necessary condition for a constrained optimum at $\hat{\boldsymbol{x}}$:

1. the gradient of the objective function must be a scalar multiple of the gradient of the constraint function at the optimum
2. the choice must be feasible, i.e. $g(\hat{\boldsymbol{x}})=0$
3. we have assumed constraint qualification at optimum

Lagrangean function

- The previous discussion motivates the following function that incorporates the constraints into an augmented objective function called the Lagrangean function.
- For a constrained optimization problem, we define the following function of $n+1$ variables:

$$
\mathcal{L}(\boldsymbol{x}, \mu)=f(\boldsymbol{x})-\mu \boldsymbol{g}(\boldsymbol{x})
$$

- We call the new variable μ the Lagrange multiplier. We will give it a good economic interpretation later in the course.
- We are interested in the critical points of this augmented function. Therefore we look for $(\hat{\boldsymbol{x}}, \hat{\mu})$ such that

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial x_{i}}(\hat{\boldsymbol{x}}, \hat{\mu})=\frac{\partial f}{\partial x_{i}}(\hat{\boldsymbol{x}})-\hat{\mu} \frac{\partial g}{\partial x_{i}}(\hat{\boldsymbol{x}})=0 \text { for all } i \\
\frac{\partial \mathcal{L}}{\partial \mu}(\hat{\boldsymbol{x}}, \hat{\mu})=g(\hat{\boldsymbol{x}})=0
\end{gathered}
$$

Figure: Consumer's problem on a budget line

Figure: Single equality constraint

Optimization with a single equality constraint

Find the minima and maxima of $f(x, z)=x+z^{2}$ subject to constraints

$$
x^{2}+z^{2}=1
$$

Form the Lagrangean:

$$
\mathcal{L}(x, z, \mu)=x+z^{2}-\mu\left(x^{2}+z^{2}-1\right)
$$

Differentiate to get the first-order conditions (FOC):

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x}=1-2 \mu x=0 \tag{1}\\
& \frac{\partial \mathcal{L}}{\partial y}=2 z-2 \mu z=0 \tag{2}\\
& \frac{\partial \mathcal{L}}{\partial \mu}=1-x^{2}-z^{2}=0 \tag{3}
\end{align*}
$$

Optimization with a single equality constraint

- The second FOC gives:

$$
z(2-2 \mu)=0
$$

- therefore either $z=0$, or $\mu=1$. Consider first the possibility that $z=0$. In that case, (3) implies that $x= \pm 1$. We get two critical points from (1):

$$
\left(x=1, z=0, \mu=\frac{1}{2}\right) \text { and }\left(x=-1, z=0, \mu=-\frac{1}{2}\right)
$$

- If $\mu=1$, (1) implies that $x=\frac{1}{2}$. By substituting into (3) we get the critical points:

$$
\left(x=\frac{1}{2}, z=\frac{\sqrt{3}}{2}, \mu=1\right) \text { and }\left(x=\frac{1}{2}, z=-\frac{\sqrt{3}}{2}, \mu=1\right)
$$

Optimization with a single equality constraint

- As a result, we have four critical points for the Lagrangean. Draw the constraint set and level curves for the objective function to get a guess of the classification of the critical points.
- Can you show the existence of a maximum? Which of the local maxima is the global maximum?

Optimization with multiple equality constraints

Consider next the case, where we have k equality constraints $g(\boldsymbol{x})=\left(g_{1}(\boldsymbol{x}), \ldots, g_{k}(\boldsymbol{x})\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. In this case, we have the problem:

$$
\begin{gathered}
\max _{\boldsymbol{x}} f(\boldsymbol{x}) \\
\text { subject to } g_{1}(\boldsymbol{x})=0 \\
g_{2}(\boldsymbol{x})=0
\end{gathered}
$$

$$
g_{k}(\boldsymbol{x})=0
$$

Form the Lagrangean now with k constraints as a function of $n+k$ variables:

$$
\mathcal{L}\left(\boldsymbol{x}, \mu_{1}, \ldots, \mu_{k}\right)=f(\boldsymbol{x})-\sum_{j=1}^{k} \mu_{j} g_{j}(\boldsymbol{x})
$$

Optimization with multiple equality constraints

We can proceed exactly as before to use the linear approximations to characterize the feasible directions from $\hat{\boldsymbol{x}}$ as $\{(\boldsymbol{x}-\hat{\boldsymbol{x}}): D g(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})\}=0$.
Since the objective function cannot increase at the optimum in any feasible direction, we have that

$$
\operatorname{Df}(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})=0 \text { whenever } D g(\hat{\boldsymbol{x}})(\boldsymbol{x}-\hat{\boldsymbol{x}})=0
$$

If $D g(\hat{\boldsymbol{x}})$ has full rank, then this is equivalent to requiring that $D f(\hat{\boldsymbol{x}})$ and $D g_{j}(\hat{\boldsymbol{x}})$ must be linearly dependent. Since we assume that $D g(\hat{\boldsymbol{x}})$ has full rank, this means that there must exist $\left(\mu_{1}, \ldots, \mu_{k}\right)$ such that

$$
\nabla f(\hat{\boldsymbol{x}})=\sum_{j=1}^{k} \mu_{j} \nabla g_{j}(\hat{\boldsymbol{x}}) .
$$

Optimization with multiple equality constraints

Hence we can summarize the three necessary conditions for local maximum:
i) Gradient alignment: $\nabla f(\hat{\boldsymbol{x}})=\sum_{j=1}^{k} \mu_{j} \nabla g_{j}(\hat{\boldsymbol{x}})$,
ii) Constraint holds: $g(\hat{\boldsymbol{x}})=0$,
iii) Constraint qualification: $D g_{1}(\hat{\boldsymbol{x}}), \ldots, D g_{k}(\hat{\boldsymbol{x}})$ are linearly independent.

The first two can be achieved by requiring that $\left(\hat{\boldsymbol{x}}, \hat{\mu}_{1}, \ldots, \hat{\mu}_{k}\right)$ be a critical point of the Lagrangean.

Optimization with multiple equality constraints: an example

- Consider the problem of maximizing

$$
f(x, y, z)=x z+y z
$$

subject to:

$$
\begin{aligned}
& g_{1}(x, y, z)=y^{2}+z^{2}-1 \\
& g_{2}(x, y, z)=x z-3
\end{aligned}
$$

1. Find the critical points of f subject to constraints $g_{1}(x, y, z)=0$ and $g_{2}(x, y, z)=0$.
2. How would you determine which of the critical points are local minima and which are local maxima?

Optimization with multiple equality constraints: an example

1. Find first the critical points of the Lagrangean

$$
\mathcal{L}\left(x, y, z, \mu_{1}, \mu_{2}\right)=x z+y z-\mu_{1}\left(y^{2}+z^{2}-1\right)-\mu_{2}(x z-3)
$$

2. First-order conditions:

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial x}=z-\mu_{2} z=0 \tag{4}\\
& \frac{\partial \mathcal{L}}{\partial y}=z-2 \mu_{1} y=0 \tag{5}\\
& \frac{\partial \mathcal{L}}{\partial z}=x+y-2 \mu_{1} z-\mu_{2} x=0 \tag{6}\\
& \frac{\partial \mathcal{L}}{\partial \mu_{1}}=y^{2}+z^{2}-1=0 \tag{7}\\
& \frac{\partial \mathcal{L}}{\partial \mu_{0}}=x z-3=0 \tag{8}
\end{align*}
$$

Optimization with multiple equality constraints: an example

We need to solve this system of equations to find the critical points. Start with (4), giving

$$
z\left(1-\mu_{2}\right)=0, \Leftrightarrow z=0 \text { or } \mu_{2}=1
$$

If $z=0$, then (8) is not true for any x and as a result, we must have $z \neq 0$. Therefore, we can only have $\mu_{2}=1$ as a candidate solution. The second FOC (5) gives

$$
y-2 \mu_{1} z=0, \Leftrightarrow y=\frac{z}{2 \mu_{1}}
$$

Optimization with multiple equality constraints: an example

Plug in the solutions for y and μ_{2} into (6) :

$$
\frac{z}{2 \mu_{1}}-2 \mu_{1} z=0 \Leftrightarrow z\left(\frac{1}{2 \mu_{1}}-2 \mu_{1}\right)=0
$$

We already know that $z \neq 0$, and therefore

$$
\frac{1}{2 \mu_{1}}-2 \mu_{1}=0 \Leftrightarrow 4 \mu_{1}^{2}=1 \Leftrightarrow \mu_{1}= \pm \frac{1}{2}
$$

Optimization with multiple equality constraints: an example

We have now solved for possible Lagrange multipliers μ_{1} ja μ_{2}, i.e. we have:

$$
\mu_{1}= \pm \frac{1}{2} \text { and } \mu_{2}=1
$$

Optimization with multiple equality constraints: an example

To get the values of the choice variables, plug in the values of the multipliers into (6) to get:

$$
y= \pm z
$$

Substituting into (7), we get (by squaring):

$$
2 z^{2}-1=0 \Leftrightarrow z= \pm \frac{1}{\sqrt{2}}
$$

The fifth FOC (8) gives:

$$
x=\frac{3}{z}
$$

or $x=3 \sqrt{2}$ if $z=\frac{1}{\sqrt{2}}$ and $x=-3 \sqrt{2}$ if $z=-\frac{1}{\sqrt{2}}$. We have now found all that we need for the critical points of f subject to the constraints.

Optimization with multiple equality constraints: an example

If $z=\frac{1}{\sqrt{2}}$, then $x=3 \sqrt{2}, y= \pm z$. This yields two critical points (x, y, z) :

$$
\begin{aligned}
& 1:\left(3 \sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& 2:\left(3 \sqrt{2},-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

If $z=-\frac{1}{\sqrt{2}}$, then $x=-3 \sqrt{2}, y= \pm z$. This gives also two critical points (x, y, z) :

$$
\begin{gathered}
3:\left(-3 \sqrt{2},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right) \\
4:\left(-3 \sqrt{2}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
\end{gathered}
$$

Optimization with multiple equality constraints: an example

We know that for all critical points, $\mu_{2}=1$, and we can check the sign of μ_{1} from FOC (5). After this, we have all the critical points of the problem as:

Critical points for the problem $\left(x, y, z, \mu_{1}, \mu_{2}\right)$:

$$
\begin{array}{r}
1:\left(3 \sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{2}, 1\right) \\
2:\left(3 \sqrt{2},-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}},-\frac{1}{2}, 1\right) \\
3:\left(-3 \sqrt{2},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, \frac{1}{2}, 1\right) \\
4:\left(-3 \sqrt{2}, \frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-\frac{1}{2}, 1\right)
\end{array}
$$

Next Lecture

- Optimization with inequality constraints
- Economic examples of constrained optimization

