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This lecture covers

1. Introduction to inequality constrained optimization
2. Karush-Kuhn-Tucker first-order conditions
3. Concave programming
4. Utility maximization problem
5. Cost minimization problem



Introduction: Utility maximization

I Choose a consumption vector (x1, ..., xn) ≥ 0 to:

max
x1,...,xn

u(x1, ..., xn)

in the feasible set given by:

n∑
i=1

pixi ≤ w ,

−xi ≤ 0 for all i .

I Solution of the problem: demand functions

(x1(p1, ...,pn,w), ..., xn(p1, ...,pn,w)).



Introduction: Cost minimization

I A firm chooses its inputs k , l to minimize the cost of reaching a production
target of q at given input prices r ,w > 0.

I The production function is assumed to be a strictly increasing and
quasiconcave function f (k , l).

c(r ,w ; q̄) := min
(k ,l)

rk + wl

subject to
q ≤ f (k , l),

k ≥ 0, l ≥ 0.

I Solution: conditional factor demands k(r ,w , q̄), l(r ,w , q̄) and cost function
c(r ,w ; q̄) giving the minimal cost to achieve production target q̄.



Optimization with inequality constraints: Formulation

I The most important class of optimization problems in economics considers
maximizing (or minimizing) an objective function f : Rn → R subject to k
inequality constraints.

I In these problems, the feasible set takes the form

F = {x ∈ Rn : h(x) ≤ 0},

where h(x) ≤ 0 can written more fully as:

h1(x1, ..., xn) ≤ 0
...

...
hk (x1, ..., xn) ≤ 0

Notice that we can incorporate equality constrains into these problems since
{x ∈ Rn : g(x) = 0} is the same set as {x ∈ Rn : g(x) ≤ 0, −g(x) ≤ 0}.



Towards first-order conditions

I Our first goal is to get the first-order conditions for an optimum.
I We say that an inequality constraint hj(x1, ..., xn) ≤ 0 is binding at x̂ if

hj(x̂) = 0.
I If hj(x̂) < 0, then we say that the constraint is not binding.
I A non-binding constraint does not restrict the feasible directions for small

changes in x̂ .
I (As with equality constraints) for binding inequality constraints hj(x̂), the

feasible directions ∆x are given again by:

Dhj(x̂)∆x ≤ 0.



Towards first-order conditions

I Non-binding constraints can be ignored. The problem in general is that we do
not know a priori which constraints are binding and which are not.

I Let’s write the Lagrangean function for the optimization problem as before:

L(x , λ1, ..., λk ) = f (x)−
k∑

j=1

λjhj(x).

I I have adopted the notation for the textbook to denote the Lagrange
multipliers in inequality constrained problems by λj .

I Both binding and non-binding constraints can be handled by the following
complementary slackness condition. For all j , we have:

λ̂jhj(x̂1, ..., x̂n) = 0.



Towards first-order conditions

I This simply says that if hj(x̂) < 0, then λ̂j = 0 and the constraint vanishes
from the Lagrangean.

I If the constraint binds, then hj(x̂) = 0 and the complementary slackness is
also satisfied.

I Based on these considerations, we formulate the first order conditions for
(x̂ , λ̂) as follows.

I We consider a point where the constraint qualification holds (i.e. the
derivatives of the binding constraints are linearly independent so that we can
use implicit function theorem).



Kuhn-Tucker or Karush-Kuhn-Tucker conditions

I The first-order conditions for the problem also known as the Kuhn-Tucker or
Karush-Kuhn-Tucker conditions for the problem are given by:

∂L
∂xi

(x̂ , λ̂) =
∂f
∂xi

(x̂)−
k∑

j=1

λ̂j
∂hj

∂xi
(x̂) = 0 for all i ,

λ̂jhj(x̂) = 0 for all j ∈ {1, ..., k},

λ̂j ≥ 0 for all j ∈ {1, ..., k},

hj(x̂) ≤ 0 for all j ∈ {1, ..., k}.



First-order necessary conditions

I Let me sum up: at the optimal point x̂ , we need

i) the usual first-order condition for the Lagrangean with respect to the choice
variables.

ii) we need that x̂ be feasible, i.e. hj(x̂) ≤ 0 for all j ,

iii) the complementary slackness conditions, and the non-negativity of the
multipliers.



Figure: Single inequality constraint
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Optimization with inequality constraints
I We have not discussed the non-negativity of the multipliers yet, but it is easy

to see why this must be true in the case of a single inequality constraint.
I Assume constraint qualification, i.e. Dh(x̂) 6= 0. By the first order conditions

with respect to the xi , we see that as before,

∇f (x̂) = λ∇h(x̂).

I If the multiplier was strictly negative at an optimal point x̂ , where the
constraint binds, then

Dh(x̂)∇f (x̂) = λ∇h(x̂) · ∇h(x̂) ≤ 0.
I Hence movement in the direction of the fastest increase of f is feasible and x̂

cannot be an optimum unless ∇f (x̂) = 0. But in this case, λ̂ = 0 since
∇h(x̂) 6= 0 by constraint qualification.

I The general case for the positive sign of the multipliers is proved using either
separating hyperplane theorem or Farkas’ Lemma and it is left for future
studies.



Figure: Two inequality constraints
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Concave programming

Consider i) maximization problems where the objective function is quasiconcave
and ii) minimization problems where the objective function is quasiconvex.

For each of these cases, we assume that the constraint functions hj are
quasiconvex so that the feasible set that is given as the intersection of lower level
sets of these functions is convex.

We are now ready to see why the first-order conditions are sufficient for maxima of
quasiconcave functions with a non-vanishing derivative on a convex set.



Concave programming

Recall from Lecture 6 that a differentiable function f on a convex set X is
quasiconcave if and only if for all x ,y ∈ X :

f (y) ≥ f (x)⇒ Df (x) (y − x) ≥ 0.

This implies the following (almost converse) result:

Proposition
Suppose Df (x) is non-zero for all x ∈ X and f is quasiconcave on X. Then x̂ is a
global maximum for f on X if Df (x̂)(y − x̂) ≤ 0 for all y ∈ X



Concave programming

Theorem
Suppose that f is quasiconcave and Df (x) 6= 0 on a the convex set
X = {x ∈ Rn : hj(x) ≤ 0 for j ∈ {1, ..., k} , where each hj(x) is a quasiconvex
function. Then any point satisfying the first-order conditions is a global maximum
for f on X.



Concave programming

Proof. Write the first-order condition with respect to x as:

Df (x̂)−
k∑

j=1

λ̂jDhj(x̂) = 0. (1)

Multiply on the right by (y − x̂) to get

Df (x̂)(y − x̂)−
k∑

j=1

λ̂jDhj(x̂)(y − x̂) = 0. (2)



Concave programming

Feasible directions for binding constraints satisfy: Dhj(x̂)(y − x̂) ≤ 0. For
nonbinding constraints, λ̂j = 0. Therefore since λ̂j ≥ 0 for all j , we have

λ̂jDhj(x̂)(y − x̂) ≤ 0 for all j .

Thus by equation (2), we see that

Df (x̂)(y − x̂) ≤ 0

for all feasible y . Therefore by the proposition above, f (x̂) ≥ f (y) for all feasible y .



Utility maximization problem (UMP)

I A consumer allocates her budget of w > 0 to n goods.
I Her consumption vector is an element of the positive orthant of the n

Euclidean space X = {x ∈ Rn
+}.

I We assume that the consumer has a continuous utility function u(x) defined
on X .

p · x ≤ w or
n∑

i=1

pixi ≤ w ,

where p = (p1, ...,pn) > 0 is the vector of strictly positive prices for the goods.



Utility maximization problem (UMP)
Maximize

u(x1, ..., xn)

subject to

n∑
i=1

pixi ≤ w ,

xi ≥ 0 for all i .

Alternatively subject to

n∑
i=1

pixi − w ≤ 0,

−xi ≤ 0 for all i .



Utility maximization problem (UMP)

I To see that the feasible set is bounded, let pmin = minj pj (i.e. one of the
smallest prices pj ).

I Then we know that for all feasible x , we have pixi ≤ w for all i since xi ≥ 0
and pi > 0 for all i .

I Therefore for all feasible x , xi ≤ w
pmin for all i so that the feasible set is bounded

since 0 ≤ xi ≤ w
pmin for all i .



Utility maximization problem (UMP)

I To see that the feasible set is closed, we need to show that all limit points of
the feasible belong to the feasible set.

I We show this by arguing that when y is not in the feasible set, it is not a limit
point.

I If y is not feasible, then either yi < 0 for some i or
∑

i piyi > w .
I In both cases all points in a small enough neighborhood of y in infeasible. In

the first case, Bε(y) with ε < −mini yi , in the second, ε <
∑

i pi yi−w
maxi pi

.
I Weiertrass’ theorem guarantees that a maximum exists. The solution is called

the Marshallian demand (demand as a function of prices and income).



UMP: Lagrangean

I Since the constraint functions are linear, the feasible set is convex.
I If u is strictly increasing (as we usually assume) and quasiconcove, then the

first order Kuhn-Tucker conditions are necessary and sufficient for optimum.
I In words, whenever we find a point satisfying the K-T conditions, we have

solved the problem.
I Lagrangean:

L(x , λ) = u(x)− λ0

[
n∑

i=1

pixi − w

]
+

n∑
i=1

λixi



UMP: K-T conditions

I The first-order K-T conditions are:

∂L
∂x

=
∂u(x)

∂xi
− λ0pi + λi = 0 for all i , (3)

λ0

[
n∑

i=1

pixi − w

]
= 0, (4)

λixi = 0 for all i , (5)
n∑

i=1

pixi − w ≤ 0, (6)

−xi ≤ 0 for all i , (7)
λi ≥ 0 i ∈ {0,1, ...,n}. (8)



UMP: Simplifying the K-T conditions

I If the utility function has a strictly positive partial derivative for some xi at the
optimum, then the budget constraint must bind and λ0 > 0.

I This follows immediately from the first line of the K-T conditions.
I For the other inequality constraints, consider the partial derivatives at

x ∈ Xwith xi → 0 for some i .
I If

lim
xi→0

∂u(x)

∂xi
=∞,

then the first line of the K-T conditions implies that at optimum xi > 0.
I If this is true for all i , then we can ignore the non-negativity constraints and we

are effectively back to a problem with a single equality constraint.
I If ∂u(x)

∂xi
<∞ for x = (xi ,x−i) = (0,x−i), then we must also consider corner

solutions where xi = 0 at optimum.



UMP: Interior solutions to K-T conditions

I For interior solutions xi > 0 for all i , we get from the first equation by
eliminating λ the familiar condition:

∂u(x)
∂xi
∂u(x)
∂xk

=
pi

pk
. (9)

I This is of course the familiar requirement that MRSxi ,xk = pi
pk

that we saw in
Principles of Economics 1.

I Now we see that the same condition extends for many goods and the
economic intuition is exactly the same.

I The price ratio gives the marginal rate of transformation between the different
goods and at an interior optimum, that rate must coincide with the marginal
rate of substitution.



UMP: Interior solutions to K-T conditions

I By multiplying these equations by pk
∂u(x)
∂xk

, we can write the first order
conditions for an interior solution as:

pk
∂u(x)

∂x1
− p1

∂u(x)

∂xk
= 0 for all k ,

n∑
i=1

pixi − w = 0. (10)

I In this equation system, we have n endogenous variables x1, ..., xn and n + 1
exogenous variables p1, ...,pn,w .

I We want to examine the comparative statics of x(p,w), for example
∂xi (p,w)
∂pi

, ∂xi (p,w)
∂pj

and ∂xi (p,w)
∂w .



UMP: Interior solutions to K-T conditions

I In words, what happens to the demand for one good when its own price
changes, when other goods prices change and when income changes.

I Straight application of Implicit function theorem is cumbersome.
I In next week’s lectures, we’ll do this via duality between UMP and expenditure

minimization. Here, tackle easy cases where the optimum can be solved
explicitly.



Utility maximization: Cobb-Douglas utility function

I Perhaps the most used functional form in economics is the Cobb-Douglas
function

u(x) = xαy1−α,

for some α ∈ (0,1).
I The distinguishing feature of this form is that the function is homogenous of

degree 1.
I You can check with the Hessian matrix (as an exercise) that u(x , y) is

concave and therefore also quasiconcave.



Utility maximization: Cobb-Douglas utility function

I Both marginal utilities are strictly positive at all (x , y) > (0,0) and

lim
x→0

∂u(x , ȳ)

∂x
= lim

y→0

∂u(x̄ , y)

∂y
=∞,

for x̄ , ȳ > 0. Since x = y = ε is feasible for small enough ε and
u(ε, ε) = ε > 0 = u(0,0), we know that even though (x̂ , ŷ , λ̂1, λ̂2, λ̂3) is a
critical point, it is not a maximum.

I Any other point satisfying the KT- conditions has Df (x , y) 6= 0 and therefore
will be the optimum.



UMP: Cobb-Douglas utility function

I First-order conditions w.r.t. x , y imply that any solution (different from (0,0)) is
interior and the budget constraint binds.

I The requirement that MRSx ,y = px
py

gives:

αy
(1− α)x

=
px

py
or pxx =

1− α
α

pyy .

I From budget constraint:
pxx + pyy = w ,

I Substituting, we get:

x(px ,py ,w) =
αw
px

, and y(px ,py ,w) =
(1− α)w

py
.



UMP: Cobb-Douglas utility function

I For the Cobb-Douglas utility function, you get the result that the expenditure
shares px x

w = α and py y
w = 1− α do not depend on prices or w .

I This extends easily to the case with n goods and u(x) = xα1
1 . . . xαn

n with
αi > 0,

∑
i αi = 1 at prices p = (p1, ...,pn). Then you have:

xi(p,w) =
αiw
pi

.

I This is not very realistic.
I The rich and the poor use their budgets very differently.



UMP: Stone-Geary utility function

I One way to get more realistic consumption patters is to define the utility
function for consumptions above a level needed for subsistence.

I Let x = (x1, ..., xn) be the levels of each good needed for survival and assume
that w ≥ p · x .

I The utility function for x ∈ Rn such that xi ≥ xi is of Cobb-Douglas -like form:

u(x) = (x1 − x1)α1 . . . (xn − xn)αn ,

where 0 < αi < 1 for all i and
∑n

i=1 αi = 1.
I Notice that the marginal utility for good i is infinite if xi = xi and that the utility

function is strictly increasing in all of its components.
I Hence we still have an interior solution and the budget constraint binds.



UMP: Stone-Geary utility function
I We get as above:

∂u(x)
∂xi
∂u(x)
∂xk

=
αi(xk − xk )

αk (xi − xi)
=

pi

pk
for all i , k ,

n∑
i=1

pixi = w .

I Taking k = 1, we get that

xi − xi =
αip1

α1pi
(x1 − x1) for all i . (11)

I Multiplying both sides by pi and summing over i gives:

n∑
i=1

pi(xi − xi) =
p1

∑n
i=1 αi

α1
(x1 − x1).



UMP: Stone-Geary utility function

I So we can solve:

x1 − x1 =
α1(w −

∑n
i=1 pixi)

p1
,

where we used the budget constraint
∑n

i=1 pixi = w and
∑n

i=1 αi = 1
I By (11), we see that

xi − xi =
αi(w −

∑n
j=1 pjxj)

pi
.

I The consumer uses a constant fraction of her excess income (above what is
needed for the necessities x) in constant shares given by the αi .

I Since the poor have less excess wealth, their consumption fractions are
closer to the ones given by the subsistence levels βi :=

xi∑
i xi

.


