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Constrained optimization

Optimization with inequality constraints

The most important class of optimization problems in economics consid-
ers maximizing (or minimizing) an objective function subject to k inequal-
ity constraints. In these problems, the feasible set takes the form

F = {x ∈ Rn : h(x) ≤ 0},

where h(x) ≤ 0 can written more fully as:

h1(x1, ..., xn) ≤ 0
...

...
hk(x1, ..., xn) ≤ 0

Notice that we can incorporate equality constrains into these problems
since {x ∈ Rn : g(x) = 0} is the same set as {x ∈ Rn : g(x) ≤ 0, −g(x) ≤
0}.

Kuhn-Tucker or Karush-Kuhn-Tucker first-order conditions

We shall concentrate on the first-order conditions for an optimum. From
this point on, we devote most of our attention to i) maximization prob-
lems where the objective function is quasiconcave and ii) minimization
problems where the objective function is quasiconvex. For each of these
cases, we assume that the constraint functions hj are quasiconvex so that
the feasible set that is given as the intersection of lower level sets of these
functions is convex.

This restriction on the constraint functions means that the only types
of equality constraints that are allowed are affine linear constraints (since
the only functions of n > 1 variables that are both quasiconvex and quasi-
concave are affine linear functions (i.e. linear plus a constant vector).
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Under these conditions, any point satisfying the first-order conditions
is a global optimum if the derivative of the objective function at the point
in question is non-zero.

We say that an inequality constraint hj(x1, ..., xn) ≤ 0 is binding at x̂
if hj(x̂) = 0. If hj(x̂) < 0, then we say that the constraint is not binding.
A non-binding constraint does not restrict the feasible directions for small
changes in x̂. For binding constraints hj(x̂), the feasible directions ∆x are
given again by:

Dhj(x̂)∆x ≤ 0.

Hence the binding constraints are similar to the equality constraints
that we discussed in the previous section. The fact that we allow for nega-
tive local changes in the values of the constraint functions with inequalities
allows us to determine the sign of the Lagrange multipliers (in contrast to
the equality constrained case). Non-binding constraints can be ignored.
The problem in general is that we do not know a priori which constraints
are binding and which are not.

Let’s write the Lagrangean function for the optimization problem as
before:

L(x, λ1, ..., λk) = f(x)−
k∑
j=1

λjhj(x).

I have adopted the notation from the textbook to denote the Lagrange
multipliers in inequality constrained problems by λj . If a constraint is not
binding, it can be ignored in the problem. If it binds, then it cannot be
ignored. But both of these cases are incorporated in the following comple-
mentary slackness condition. For all j, we have:

λjhj(x̂1, ..., x̂n) = 0.

This simply says that if hj(x̂) < 0, then λj = 0 and the constraint van-
ishes from the Lagrangean. If the constraint binds, then hj(x̂) = 0 and the
complementary slackness is also satisfied.

Based on these considerations, we formulate the first order conditions
for (x̂, λ̂) as follows. We consider a point where the constraint qualifi-
cation holds (i.e. the derivatives of the binding constraints are linearly
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independent so that we can use implicit function theorem). 1

The first-order conditions for the problem also known as the Kuhn-
Tucker or Karush-Kuhn-Tucker conditions for the problem are given by:

∂L
∂xi

(x̂, λ̂) =
∂f

∂xi
(x̂)−

k∑
j=1

λ̂j
∂hj
∂xi

(x̂) = 0 for all i,

λ̂jhj(x̂) = 0 for all j ∈ {1, ..., k},

λ̂j ≥ 0 for all j ∈ {1, ..., k},

hj(x̂) ≤ 0 for all j ∈ {1, ..., k}.

Let me sum up: at the optimal point x̂, we need i) the usual first-order
condition for the Lagrangean with respect to the choice variables. ii) we
need that x̂ be feasible, i.e. hj(x̂) ≤ 0 for all j, iii) the complementary
slackness conditions, and the non-negativity of the multipliers.

We have not discussed the non-negativity of the multipliers yet, but
it is easy to see why this must be true in the case of a single inequality
constraint. Assume constraint qualification, i.e. Dh(x̂) 6= 0. By the first
order conditions with respect to the xi, we see that as before,

∇f(x̂) = λ∇h(x̂).

If the multiplier was strictly negative at an optimal point x̂, where the
constraint binds, then

Dh(x̂)∇f(x̂) = λ∇h(x̂) · ∇h(x̂) ≤ 0.

Hence movement in the direction of the fastest increase of f is feasible
and x̂ cannot be an optimum unless ∇f(x̂) = 0. But in this case, λ = 0
since ∇h(x̂) 6= 0 by constraint qualification contradicting the assumption
that λ < 0.

The general case for the positive sign of the multipliers is proved using
either separating hyperplane theorem or Farkas’ Lemma and it is left for
future studies. The following pictures should give you an idea why the
gradient of the objective function must be a positive combination of the
gradients of the constraint functions.

1I note here that for the case of quasiconvex constraint functions, a sufficient condition
for constraint qualification is that the feasible set has an interior point.
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Figure 1: Single inequality constraint
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Figure 2: Two inequality constraints
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Concave programming

We are now ready to see why the first-order conditions are sufficient for
maxima of quasiconcave functions with a non-vanishing derivative on a
convex set. Recall from Lecture 6 that a differentiable function f on a con-
vex set X is quasiconcave if and only if for all x,y ∈ X :

f (y) ≥ f (x)⇒ Df (x) (y − x) ≥ 0.

This implies the following (almost converse) result:

Proposition 1. SupposeDf(x) is non-zero for all x ∈ X and f is quasicon-
cave on X . Then x̂ is a global maximum for f on X if Df(x̂)(y − x̂) ≤ 0
for all y ∈ X

Theorem 1. Suppose that f is quasiconcave and Df(x) 6= 0 on a the con-
vex set X = {x ∈ Rn : hj(x) ≤ 0 for j ∈ {1, ..., k} , where each hj(x) is a
quasiconvex function. Then any point satisfying the first-order conditions
is a global maximum for f on X .

Proof. Write the first-order condition with respect to x as:

Df(x̂)−
k∑
j=1

λ̂jDhj(x̂) = 0. (1)

Multiply on the right by (y − x̂) to get

Df(x̂)(y − x̂)−
k∑
j=1

λ̂jDhj(x̂)(y − x̂) = 0. (2)

For feasible directions for binding constraints, we have Dhj(x̂)(y −
x̂) ≤ 0 since each hj is assumed to be quasiconvex. For nonbinding con-
straints, λ̂j = 0. Therefore since λ̂j ≥ 0 for all j, we have

λ̂jDhj(x̂)(y − x̂) ≤ 0 for all j.

Thus by equation (2), we see that

Df(x̂)(y − x̂) ≤ 0

for all feasible y. Therefore by the proposition above, f(x̂) ≥ f(y) for all
feasible y.
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Before getting into economic applications proper, let’s conclude this
section with a couple of numerical examples demonstrating how to find
constrained maxima.

Example 1. Maximize the objective function f(x, y, z) = xyz+ z, subject to

x2 + y2 + z ≤ 6

x ≥ 0

y ≥ 0

z ≥ 0.

1. Find the points that satisfy the first-order condition

2. Investigate whether the constraint x2 + y2 + z ≤ 6 binds at optimum.

3. Find a point satisfying the first order conditions with x = 0.

Let’s do this mechanically and think about what we do only afterwards.

1. From the Lagrangean:

L(x, y, z, λi) = xyz + z − λ1
[
x2 + y2 + z − 6

]
+ λ2x+ λ3y + λ4z

The first-order conditions are:
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∂L
∂x

= yz − 2λ1x+ λ2 = 0 (3)

∂L
∂y

= xz − 2λ1y + λ3 = 0 (4)

∂L
∂z

= xy + 1− λ1 + λ4 = 0 (5)

λ1
[
x2 + y2 + z − 6

]
= 0 (6)

λ2x = 0 (7)
λ3y = 0 (8)
λ4z = 0 (9)

x2 + y2 + z ≤ 6 (10)
−x ≤ 0 (11)
−y ≤ 0 (12)
−z ≤ 0 (13)
λi ≥ 0 i ∈ {1, 2, 3, 4} (14)

2. If at optimum, λ1 = 0, i.e. the first constraint is not binding, we get
from (5):

xy + 1 + λ4 = 0

This is not possible for any feasible (x, y), since λ4 ≥ 0, implying that
either x or y must be negative. By the non-negativity constraints, we
conclude that

λ1 > 0,

and x2 + y2 + z ≤ 6 binds at the optimum.

3. Find a critical point with x = 0:
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∂L
∂x

= yz + λ2 = 0 (15)

∂L
∂y

= −2λ1y + λ3 = 0 (16)

∂L
∂z

= 1− λ1 + λ4 = 0 (17)

λ1
[
y2 + z − 6

]
= 0 (18)

λ2x = 0 (19)
λ3y = 0 (20)
λ4z = 0 (21)

y2 + z ≤ 6 (22)
−x ≤ 0 (23)
−y ≤ 0 (24)
−z ≤ 0 (25)
λi ≥ 0 i ∈ {1, 2, 3, 4} (26)

By part b), we know that λ1 > 0. The second FOC gives λ3 = λ1y.
Multiplying both sides by y and using yλ3 = 0, and λ1 > 1 we see
that y = 0. This yields z = 6. We have therefore found the point
(x = 0, y = 0, z = 6) and (λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0) satisfying the
first-order conditions and x = 0.

You can check that the constraints are quasiconvex, but unfortunately
the objective function cannot be seen to be quasiconcave. Hence we
need to check other cases. By symmetry in the problem, consider
x̂ = ŷ > 0 and maximize x̂2z + z subject to 2x̂2 + z = 6. You can
solve from the first-order conditions that (x = 1, y = 1, z = 4) and
(λ1 = 2, λ2 = 0, λ3 = 0, λ4 = 0) is another critical point of the La-
grangean. You can see that this gives a higher value to the objective
function and you can argue using symmetry that there are no other
critical points. Hence you have found the maximum. In fact, finding
a point satisfying the first-order conditions tells us that the objective
function is not quasiconcave.

The next problem is to find a maximum in a problem that is really a
consumer optimization problem without the economics terminology.
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Example 2. Maximize

f(x, y) = αx+
√
y

subject to

px+ y ≤ 1,

x ≥ 0,

y ≥ 0.

Let’s assume that p > 0 and let’s find interior solutions, i.e. (x̂, ŷ) > 0.
Are there other kinds of solutions?

Form the Lagrangean:

L(x, y, λi) = αx+
√
y − λ1 [px+ y − 1] + λ2x+ λ3y

First-order conditions are:

∂L
∂x

= α− λ1p+ λ2 = 0 (27)

∂L
∂y

=
1

2
y−

1
2 − λ1 + λ3 = 0 (28)

λ1 [px+ y − 1] = 0 (29)
λ2x = 0 (30)
λ3y = 0 (31)

px+ y ≤ 1 (32)
−x ≤ 0 (33)
−y ≤ 0 (34)
λi ≥ 0 i ∈ {1, 2, 3} (35)

First-order conditions give:

λ1 =
α + λ2
p

> 0

If x, y > 0, we have λ2, λ3 = 0 and y = ( p
2α

)2 .
Since λ1 > 0, we have px+ y = 1 at optimum and:
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x∗ =
4α2 − p2

4pα2

Note that this solution is valid only if 2α ≥ p. Constraint qualification
holds since the derivative of the binding constraint is nonzero at optimum:
D(h1(x, y)) = (p, 1)>. If p > 2α, then the optimum is a corner solution.
From (28), we see that at any optimum, y > 0. Therefore the only other
possibility is that (x̂, ŷ) = (0,1). What is the value of λ2 in this case?
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