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Problem set 4 Solutions: 

 

Question 1: 

max
𝑥,𝑦

𝑥𝑦 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:     𝑥 + 𝑦 ≤ 100 

                     𝑥 ≤ 40 

                                                                   𝑥, 𝑦 ≥ 0 

We first form the Lagrangian: 

𝐿 = 𝑥𝑦 − 𝜆1(𝑥 + 𝑦 − 100) − 𝜆2(𝑥 − 40) + 𝜆3𝑥 + 𝜆4𝑦 = 0 

The first order conditions: 

𝜕𝐿

𝜕𝑥
= 0 ⇒ 𝑦 − 𝜆1 − 𝜆2 + 𝜆3 = 0     (1) 

𝜕𝐿

𝜕𝑦
= 0 ⇒ 𝑥 − 𝜆1 + 𝜆4 = 0              (2) 

𝜆1(𝑥 + 𝑦 − 100) = 0                        (3) 

𝜆2(𝑥 − 40) = 0                                  (4) 

𝜆3𝑥 = 0 , 𝜆4𝑦 = 0 

𝑥 + 𝑦 ≤ 100, 𝑥 ≤ 40, 𝑥, 𝑦 ≥ 0  

If 𝑥, 𝑦 > 0, then 𝜆3, 𝜆4 = 0. Putting this into (1) and (2) we have: 

𝑥 = 𝜆1 

𝑦 − 𝑥 = 𝜆2 

Using (3) we have: 

𝑥(𝑥 + 𝑦 − 100) = 0 

And 𝑥 > 0, so first condition is binding and: 

𝑥 + 𝑦 = 100          (5) 

Using (4) 
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(𝑦 − 𝑥)(𝑥 − 40) = 0 ⇒ {
𝑦 = 𝑥    𝑛𝑜𝑡 𝑣𝑎𝑙𝑖𝑑 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 (5) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑓𝑎𝑐𝑡 𝑡ℎ𝑎𝑡 𝑥 ≤ 40
𝑥 = 40 𝑣𝑎𝑙𝑖𝑑, 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑖𝑠 𝑏𝑖𝑛𝑑𝑖𝑛𝑔                   

 

So 𝑥∗ = 40. And using (5) we have 

𝑦∗ = 100 − 40 = 60 

 

Question 2: 

a) The consumer can save in the first period but cannot borrow so the constraints are: 

0 ≤ 𝑐1 ≤ 𝑤1   𝑎𝑛𝑑    0 ≤ 𝑐2 + 𝑐1 ≤ 𝑤2 + 𝑤1 

b) Now the consumer can borrow at the first stage: 

0 ≤ 𝑐1 ≤ 𝑤1 + 𝑏    𝑎𝑛𝑑     0 ≤ 𝑐2 + 𝑐1 ≤ 𝑤2 + 𝑤1 

c) The problem in the case of the identical utility functions: 

max
𝑐1,𝑐2

𝑢(𝑐1) + 𝑢(𝑐2) 

s.t: 𝑐1 ≤ 𝑤1 + 𝑏 

𝑐2 + 𝑐1 ≤ 𝑤2 + 𝑤1 

First we form the Lagrangian: 

𝐿 = 𝑢(𝑐1) + 𝑢(𝑐2) − 𝜆1(𝑐1 − 𝑤1 − 𝑏) − 𝜆2(𝑐1 + 𝑐2 − 𝑤1 − 𝑤2) 

Now we write the focs: 

𝜕𝐿

𝜕𝑐1
= 𝑢′(𝑐1) − 𝜆1 − 𝜆2 = 0 

𝜕𝐿

𝜕𝑐2
= 𝑢′(𝑐2) − 𝜆2 = 0 

𝜆1(𝑐1 − 𝑤1 − 𝑏) = 0 

𝜆2(𝑐1 + 𝑐2 − 𝑤1 − 𝑤2) = 0 

𝑐1 ≤ 𝑤1 + 𝑏 

𝑐2 ≤ 𝑤2 + 𝑤1 − 𝑐1 

𝑐1, 𝑐2 > 0 

𝜆1, 𝜆2 ≥ 0 

According to assumptions, 𝑢′(𝑐𝑡) > 0 so 𝜆2 > 0 so the second constraint is binding and: 

𝑐1 + 𝑐2 = 𝑤1 + 𝑤2 

If we assume that 𝜆1 ≠ 0 so the first constraint is also binding and 𝑐1 = 𝑤1 + 𝑏 

And 

𝑐2 = 𝑤2 − 𝑏 

In the case of 𝑤2 < 𝑏, 𝑐2 will be negative and it is not a valid solution so 𝜆1 = 0, then from focs: 

𝑢′(𝑐2) = 𝑢′(𝑐1) 

And because u’ is strictly increasing 𝑐1 = 𝑐2 = 𝑐 



So 

𝑐∗ =
𝑤1 + 𝑤2

2
 

d)  

 

Now the problem is: 

max
𝑐1,𝑐2

𝑢(𝑐1) + 𝛿𝑢(𝑐2) 

s.t: 𝑐1 ≤ 𝑤1 + 𝑏 

𝑐2 ≤ 𝑤2 + 𝑤1 − 𝑐1 

All of the steps are the same as the part a and at the end: 

𝑢′(𝑐1) = 𝛿𝑢′(𝑐2) 

Considering the facts that: 

𝛿 ∈ (0,1)  𝑎𝑛𝑑  𝑢′′(𝑐) < 0 

We conclude that:  

𝑐1 > 𝑐2 

 

e)  

According to part d when the consumer is impatient and 𝑢2(𝑐) = 𝛿𝑢1(𝑐) and 𝛿 ∈ (0,1), 

marginal utility of consumer in the second period will be lower than the one in the first period. 

 

Question 3: 

max
𝑐1,𝑐2

ln(𝑐1) + 𝛿ln (𝑐2) 

𝑐2 ≤ 𝑤2 + (1 + 𝑟)(𝑤1 − 𝑐1) 

a)  

𝐿 = ln(𝑐1) + δln(𝑐2) − 𝜇(𝑐2 − 𝑤2 − (1 + 𝑟)(𝑤1 − 𝑐1)) 
𝜕𝐿

𝜕𝑐1
=

1

𝑐1
− 𝜇(1 + 𝑟) = 0 

𝜕𝐿

𝜕𝑐2
=

δ

𝑐2
− 𝜇 = 0 

𝜇(𝑐2 − 𝑤2 − (1 + 𝑟)(𝑤1 − 𝑐1)) = 0 

𝑐2 ≤ 𝑤2 + (1 + 𝑟)(𝑤1 − 𝑐1) 

𝑐1, 𝑐2 > 0 

b) The constraint function is linear so the feasible set is convex. Moreover, the utility 

function is strictly increasing and quasiconcave so the first order K-T conditions are 

sufficient to solve the problem. 

c)  
𝜕𝐿

𝜕𝑐2
=

δ

𝑐2
− 𝜇 = 0 ⇒ 𝜇 ≠ 0 ⇒ 𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑖𝑠 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 

Moreover 



δ

𝑐2
= 𝜇 =

1

𝑐1(1 + 𝑟)
⇒ 𝑐2 = 𝑐1δ(1 + 𝑟) 

Putting this into the budget constraint we have: 

 

𝑐1δ(1 + 𝑟) = 𝑤2 + (1 + 𝑟)(𝑤1 − 𝑐1) ⇒ 𝑐1
∗ =

𝑤2 + 𝑤1(1 + 𝑟)

(1 + δ)(1 + 𝑟)
 

𝑐2
∗ =

δ(𝑤2 + 𝑤1(1 + 𝑟))

(1 + δ)
 

d)  

𝑐2 = 𝑐1δ(1 + 𝑟) 𝑎𝑛𝑑  𝑐1, 𝑐2 > 0 

If 𝑐1
∗ < 𝑐2

∗ , then δ(1 + 𝑟) > 1 

 

Question 4: 

a)  

max
𝑐1,𝑐2

ln(𝑐1) + 𝛿ln (𝑐2) 

𝑤1 − 𝑐1 < 0 → 𝑐2 ≤ 𝑤2 + (1 + 𝑟̅)(𝑤1 − 𝑐1) 

𝑤1 − 𝑐1 > 0 → 𝑐2 ≤ 𝑤2 + (1 + 𝑟)(𝑤1 − 𝑐1) 

 

 

 

 

 

 

 

 

 

 

 

b)  

1 + 𝑟 ≤ 𝑀𝑅𝑆(𝑐1=𝑤1,𝑐2=𝑤2) ≤ 1 + 𝑟̅ 

Otherwise it is not going to be optimum. 

C,d)  

𝑖𝑓   1 + 𝑟 < 𝑀𝑅𝑆(𝑐1 = 𝑤1, 𝑐2 = 𝑤2) < 1 + 𝑟̅ 

 

𝑐2 

𝑐1 

𝑐2
𝐵 

𝑐1
𝐵 

𝑐2
𝑠 

𝑐1
𝑠 

𝑤2 

𝑤1 



 

According to this condition you are at the optimum and there is no way (by saving or borrowing) you 

could increase your utility. 

 

𝑖𝑓   𝑀𝑅𝑆(𝑐1 = 𝑤1, 𝑐2 = 𝑤2) > 1 + 𝑟̅ 

 

High MRS means that we prefer to borrow money to increase 𝑐1 and decrease  𝑐2. According to the 

figure in part a, when MRS is high at the point (𝑐1 = 𝑤1, 𝑐2 = 𝑤2) we are at the bottom of the 1 +

𝑟̅ budget constraint line. We can increase our utility by borrowing and decreasing 𝑐2 to increase the 

consumption in period one 𝑐1. 

 

𝑖𝑓   1 + 𝑟 > 𝑀𝑅𝑆(𝑐1 = 𝑤1, 𝑐2 = 𝑤2) 

 

Low MRS means that we want to save money to increase 𝑐2 and decrease  𝑐1. (we are at the bottom 

of the 1 + 𝑟 budget line) 

 

e)  

 

Before solving this problem we should consider that this is exactly the same as question 

3. The only difference is that now we should solve the problem for two different cases 

with two different budget lines, so at the end one of them will be our final solution for 

the optimization problem. According to the results of the question 3 we have: 

 

For points where 𝑐1 < 𝑤1 𝑎𝑛𝑑 𝑐2 > 𝑤2: 

𝑐1,1
∗ =

𝑤2 + 𝑤1(1 + 𝑟̅)

(1 + δ)(1 + 𝑟̅)
 

𝑐2,1
∗ =

δ(𝑤2 + 𝑤1(1 + 𝑟̅))

(1 + δ)
 

For points where 𝑐1 > 𝑤1 𝑎𝑛𝑑 𝑐2 < 𝑤2: 

𝑐1,2
∗ =

𝑤2 + 𝑤1(1 + 𝑟)

(1 + δ)(1 + 𝑟)
 

𝑐2,2
∗ =

δ(𝑤2 + 𝑤1(1 + 𝑟))

(1 + δ)
 

 

Only one of these solutions will be valid (according to the conditions over 𝑐1, 𝑐2) at the 

end. 

 

 



 

 

Question 5: 

a) For convex functions we have: 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≤ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 

And for concave functions: 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) ≥ 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 

So if the function f is convex and concave at the same time then: 

𝑓(𝜃𝑥 + (1 − 𝜃)𝑦) = 𝜃𝑓(𝑥) + (1 − 𝜃)𝑓(𝑦) 

To prove that the only function that has the above characteristics is the affine function we should 

prove that: 

1- 𝑓(𝛼𝑥) = 𝛼𝑓(𝑥) and 

2- 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦) 

Without loss of generality we assume that 𝑓(0) = 0 (if not we can easily assume function g, where 

𝑔(𝑥) = 𝑓(𝑥) − 𝑓(0) and we need the lemma that if function f is both concave and convex then the 

function 𝑓(𝑥) − 𝑓(0) is both convex and concave and then prove the characteristics for function g.) 

1- 𝑓(𝛼𝑥) = 𝑓(𝛼𝑥 + (1 − 𝛼) ∗ 0) = 𝛼𝑓(𝑥) + (1 − 𝛼)𝑓(0) = 𝛼𝑓(𝑥) 

2- 𝑓(𝑥 + 𝑦) = 𝑓 (
1

2
. 2𝑥 +

1

2
. 2𝑦) =

1

2
𝑓(2𝑥) +

1

2
𝑓(2𝑦) = 𝑓(𝑥) + 𝑓(𝑦) 

So f is an affine function. 

b) For simplicity we start with n=1. According to the definitions of the quasiconcave and 

quasiconvex functions: 

 

Quasi concave functions:       𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≥ min {𝑓(𝑥), 𝑓(𝑦)} 

Quasi convex functions:        𝑓(𝛼𝑥 + (1 − 𝛼)𝑦) ≤ max {𝑓(𝑥), 𝑓(𝑦)} 

So any increasing or decreasing function f in 𝑅+ is both quasiconcave and quasiconves, such as: 

𝑓(𝑥) = 𝑥2    𝑜𝑟     𝑓(𝑥) = 𝑒𝑥    … 

 

Now for the case of n=2, consider any strictly monotone function of an affine function such as 

(𝑦 − 𝑥)3.  This is a composite function 𝑓(𝑔(𝑥)) where g is an affine function (both quasi concave and 

quasi convex) and f is strictly increasing, so we can easily conclude that the function  𝑓(𝑔(𝑥)) is also 

both quasi convex and quasi concave.  

 

c) Assume the point to be: 

𝑝0 = (𝑥0, 𝑦0, 𝑧0) 

And the plane N to be: 

𝑁: 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 



So the optimization problem is: 

min
(𝑥,𝑦,𝑧)∈𝑁

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 

 

 

 

 

We can equivalently write it as: 

max
(𝑥,𝑦,𝑧)∈𝑁

− [(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0 

Now the objective function is a concave function and the constraint is the set of all the points on a 

plain which is obviously a convex set. 

 

d)  

𝑓(𝑥) is a concave so  

𝑓(𝜆1𝑥1 + ⋯+ 𝜆𝑛𝑥𝑛) > 𝜆1𝑓(𝑥1) + ⋯+ 𝜆𝑛𝑓(𝑥𝑛) 

𝑔(𝑦) 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑎𝑛𝑑 𝑐𝑜𝑛𝑐𝑎𝑣𝑒 𝑠𝑜  𝑔′(𝑥) ≥ 0 𝑎𝑛𝑑  𝑔′′(𝑥) ≤ 0 

now we start with the composite function: 

𝑔(𝑓(𝑥)) = 𝑔(𝑓(𝜆1𝑥1 + ⋯+ 𝜆𝑛𝑥𝑛)) 

since g is an increasing function and f is concave: 

𝑔(𝑓(𝜆1𝑥1 + ⋯+ 𝜆𝑛𝑥𝑛)) > 𝑔(𝜆1𝑓(𝑥1) + ⋯+ 𝜆𝑛𝑓(𝑥𝑛)) 

and because g is concave 

𝑔(𝜆1𝑓(𝑥1) + ⋯+ 𝜆𝑛𝑓(𝑥𝑛)) > 𝜆1𝑔(𝑓(𝑥1)) + ⋯+ 𝜆𝑛𝑔(𝑓(𝑥𝑛)) 

so 𝑔(𝑓(𝑥)) is a concave function. 

 

Question 6: 

a)  

We form the Hessian matrix of the function u: 

𝑢(𝑓, 𝑐, 𝑠) = 2√𝑓 +  2√𝑐 +  2√𝑠 

So 



𝐻𝑢 =

[
 
 
 
 
 
 
𝜕2𝑢

𝜕𝑓2

𝜕2𝑢

𝜕𝑓𝜕𝑐

𝜕2𝑢

𝜕𝑓𝜕𝑠

𝜕2𝑢

𝜕𝑐𝜕𝑓

𝜕2𝑢

𝜕𝑐2

𝜕2𝑢

𝜕𝑐𝜕𝑠

𝜕2𝑢

𝜕𝑓𝜕𝑠

𝜕2𝑢

𝜕𝑠𝜕𝑐

𝜕2𝑢

𝜕𝑠2 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
−

1
2

𝑓
3
2

0 0

0 −

1
2

𝑐
3
2

0

0 0 −

1
2

𝑠
3
2 ]
 
 
 
 
 
 
 
 
 

 

 

Which is obviously negative definite for all the (𝑓, 𝑐, 𝑠) in the domain, so the function u is strictly 

concave. 

b)  

So the time of the father is allocated to three different tasks: 

𝑠 + 𝑐 + ℎ𝑤 = 24 

Where ℎ𝑤 is the working time. Moreover the income should be equal to the expenses so: 

ℎ𝑤 . 𝑤 ≥ 𝑓 

So over all 

(24 − 𝑠 − 𝑐). 𝑤 − 𝑓 ≥ 0 

 

c)  

The feasible set is: 

𝑔(𝑓, 𝑐, 𝑠) = (24 − 𝑠 − 𝑐). 𝑤 − 𝑓 ≥ 0 

0 ≤ 𝑠 ≤ 24 

0 ≤ 𝑐 ≤ 24 

0 ≤ 𝑓 ≤ 24𝑤 

d)  

 

max
𝑓,𝑐,𝑠

2√𝑓 +  2√𝑐 +  2√𝑠 

𝑠𝑡. (24 − 𝑠 − 𝑐). 𝑤 − 𝑓 ≥ 0 

𝑠, 𝑐, 𝑓 ≥ 0 

We form the Lagrangian: 

𝐿 = 2√𝑓 +  2√𝑐 +  2√𝑠 + 𝜆((24 − 𝑠 − 𝑐). 𝑤 − 𝑓) 

The first order conditions: 



𝜕𝐿

𝜕𝑓
=

1

√𝑓
− 𝜆 = 0 

𝜕𝐿

𝜕𝑐
=

1

√𝑐
− 𝜆𝑤 = 0 

𝜕𝐿

𝜕𝑠
=

1

√𝑠
− 𝜆𝑤 = 0 

𝜆[(24 − 𝑠 − 𝑐). 𝑤 − 𝑓] = 0 

 

e,f)  

from the first three conditions 

𝜆 =
1

√𝑓
=

1

𝑤√𝑐
=

1

𝑤√𝑠
 → 𝑐 = 𝑠 =

𝑓

𝑤2
 

since 𝜆 ≠ 0, the budget constraint should bind so 

[(24 − 𝑠 − 𝑐). 𝑤 − 𝑓 = 0 

using these two constraints, we have: 

(24 −
2𝑓

𝑤2
)𝑤 − 𝑓 = 0 → 24𝑤 = 𝑓 (

2

𝑤
+ 1) 

𝑓∗ =
24𝑤2

𝑤 + 2
  , 𝑐∗ = 𝑠∗ =

24

𝑤 + 2
 

 

The Weierstrass’ theorem is satisfied because the objective function is a continuous function 

that is defined on a closed interval. Note that since the partial derivatives of the function 

with respect to f,s and c are infinite at zero, they are not defined there. 

 

 

 

 

 


