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This lecture will introduce

1. Metabolic phenotype prediction and estimation using genome-
scale metabolic models

2. Design of synthetic metabolic pathways

3. Design of engineering strategies for optimizing production



1. Metabolic phenotype prediction and
estimation using genome-scale metabolic models
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Why is metabolism relevant for synthetic biology?

Metabolism = (bio)chemical reactions involved in sustaining a living state of cells
and an organism

 Metabolism generates precursors for product compounds but also for circuit
components
 Metabolism generates energy and redox power
 Metabolism is involved in the regulation of cells

Wikipedia
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Slide from Jaakko Mattila



Modelling needed for elucidating metabolic states

Genome-scale metabolic
network of Baker’s yeast

Metabolic state = metabolic phenotype, loosely defined, fluxes and metabolite
concentrations or just the state of some specific feature



Assembly of genome-wide metabolism

27/04/2021 VTT – beyond the obvious 7
Figure from O’Brien et al. 2015
https://doi.org/10.1016/j.cell.2015.05.019
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Conversion to a mathematical representation

Stoichiometric matrix

𝑑𝑿
𝑑𝑡

= 𝑺 ȉ 𝒗 = 𝑺 ȉ 𝒇(𝒆 𝒕 , 𝒔 𝒕 ,𝒑) (Equation 1)

Obeying the law of conservation of mass,
metabolite mass balances constrain metabolic phenotypes

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
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Steady state assumption linearizes the mass balances

𝑑𝑿
𝑑𝑡

= 𝑺 ȉ 𝒗 = 𝑺 ȉ 𝒇(𝒆 𝒕 , 𝒔 𝒕 ,𝒑) = 0 (Equation 2)

The linear system is lighter to solve and free of kinetic equations and parameters
Additional constraints introduced to obey the second law of thermodynamics

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
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Linear optimization can be used to identify optimal
metabolic states

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015

maximize (or minimize) 𝒄′ ȉ 𝒗

subject to 𝑺 ȉ 𝒗 = 0 (Equation 3)
v,lb < v < v,ub

Flux Balance Analysis (FBA) Varma and Palsson, 1993; Varma and Palsson, 1994
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Task:
What are the benefits arising from the steady state assumption?

a) kinetic parameters are not needed
b) linear problems are easier to solve
c) metabolism is not dynamic
d) metabolite concentrations are not variables



Artificial reaction(s) forming biomass allows growth
simulations
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Biomass forming reaction(s)



What should the artificial biomass reaction(s) include?
Universally Essential Cofactors in
Prokaryotes
Xavier JC et al. (2017) Metab Eng.Protein

Carbohydrates
Lipids
Nucleic acids

• Proportions and exact compositions are species, strain, and
condition dependent

• Biomass equation commonly describes the energy and redox
balancing requirements of synthesizing macromolecules

• Dilution of other intracellular metabolites due to cell division
is neglectable and omitted in simulations

product
product

BIOMASS

nutrient

nutrient

nutrient
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Task:
How is microbial growth described in genome-scale metabolic
models?

a) number of cells increase
b) biomass is a product as any other compound produced out
of the cells
c) energy and redox costs of growth predicted using model
simulations



Metabolic states depend on environment
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Including biomass

Growth medium

Figure adopted from O’Brien et al. 2015



Specific fluxes
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Flux units mmol/(g CDW h)

Since the artificial biomass
reaction is defined as mmoles
of precursors for 1 g CDW



Prediction vs estimation of metabolic state?
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When arbitrary constraints are used, yields can be predicted
When empirical rates are used as constraints, other rates can be estimated
or predicted
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Task:
How is growth environment considered in the genome-scale
metabolic model simulations?

a) it is described in the manuscript
b) it is encoded in the exchange flux bounds
c) if experimental uptake rates are known, fluxes can be
estimated
d) if experimental uptake rates are not known, nothing can be
predicted



FBA simulations optimizing growth predict well
experimental phenotypes



Manually curated models for model organisms

Castillo S, Patil KR, Jouhten P. Yeast Genome-Scale Metabolic Models for
Simulating Genotype-Phenotype Relations. DOI:10.1007/978-3-030-13035-0_5

For example
• Escherichia coli
• Bacillus subtilis
• Corynebacterium glutamicum
• Saccharomyces cerevisiae
• Other yeasts (figure)
• Human
• Mouse



Model reconstruction automatically from genome
either bottom-up or top-down

Machado et al. Fast automated reconstruction of genome-scale metabolic models
for microbial species and communities. Nucleic Acids Res. (2018) 46:7542-7553.
doi:10.1093/nar/gky537.

Functional genome
annotation for reaction
scores
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CarveMe for top-down reconstruction of
bacterial models

CarveMe: Machado et al. Fast
automated reconstruction of
genome-scale metabolic models for
microbial species and communities.
Nucleic Acids Res. (2018) 46:7542-
7553. doi:10.1093/nar/gky537.

Available as python package:
https://github.com/cdanielmachado/
carveme
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Eukaryotic metabolism is compartmentalized



Novel CarveFungi for eukaryotic model reconstruction
by predicting enzyme subcellular localizations

~ 5000
reactions

Unpublished
work
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Task:
Why is model reconstruction more challenging for eukaryotic
than for prokaryotic species?

a) it cannot be done top-down
b) subcellular compartment membranes are not permeable to
many compounds
c) enzyme subcellular localization varies between species



Recent literature
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https://www.nature.com/articles/s41579-020-00440-4



1. Design of synthetic metabolic pathways
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Synthetic pathway for vanillin production in yeast

Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil



3-dehydroshikimate
dehydrogenase

Slide from Dr. Kiran Patil
Hansen et al., AEM, 2009

Brochado et al., 2010

Synthetic pathway for vanillin production in yeast



Aromatic carboxylic
acid reductase

Slide from Dr. Kiran Patil
Hansen et al., AEM, 2009

Brochado et al., 2010

Synthetic pathway for vanillin production in yeast



O-methyltransferase

Slide from Dr. Kiran Patil
Hansen et al., AEM, 2009

Brochado et al., 2010

Synthetic pathway for vanillin production in yeast



Phosphopantetheinyl transferase

Slide from Dr. Kiran Patil
Hansen et al., AEM, 2009

Brochado et al., 2010

Synthetic pathway for vanillin production in yeast



Glycosyl transferase

Slide from Dr. Kiran Patil
Hansen et al., AEM, 2009

Brochado et al., 2010

Synthetic pathway for vanillin production in yeast



Synthetic pathway design

27/04/2021 VTT – beyond the obvious 34Figure from Finnigan et al. Nature Catalysis
volume 4, pages98–104(2021)



Metabolic reaction databases
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https://www.genome.jp/kegg/

https://metacyc.org/

https://www.rhea-db.org/

https://www.metanetx.org/
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Task: Which reactions are needed to convert 3,4-
dihydroxybenzoate to cis,cis-muconate? What are the
proteins (uniprot entries) that could be used?

https://www.genome.jp/kegg/

https://metacyc.org/

https://www.rhea-db.org/

https://www.metanetx.org/

Protein database: https://www.uniprot.org/



Enzymes may be promiscuous
 Enzymes may catalyze alternative reactions

• catalytic promiscuity = "ability of an enzyme to catalyze a secondary reaction at the
same active site where its primary activity occurs, and the secondary activity has a
different mechanism”

• substrate promiscuity = substrate ambiguity

Reactions catalyzed by
KDG aldolase from
Sulfolobus solfataricus

http://www.jbc.org/content/279/42/43886.full.html
http://www.jbc.org/content/285/44/33701.long



Example of catalytic promiscuity:
4-Oxalocrotonate Tautomerase
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Primary reaction

2-hydroxy-2,4-hexadienedioate              2-oxo-3-hexenedioate

Secondary reaction: aldol condensation

https://chemistry-
europe.onlinelibrary.wiley
.com/doi/full/10.1002/cbi
c.201000633

acetaldehyde benzaldehyde cinnamaldehyde



Reaction rules model possible
enzyme catalyzed reactions
 Rules model similarities to known reactions (i.e.

similarities of reactants)
 Assume that if the core of the reaction (where the

bonds break) remains the same then an enzyme could
be found/built for the novel reaction

 Define different dimensions of the core

 Reaction rules create extended metabolic space

Retropath method reaction signature
Molecular signature

Atomic
signature

Reaction signature

Carbonell, P., Planson, A.-G., Fichera, D., & Faulon, J.-L. (2011). A retrosynthetic
biology approach to metabolic pathway design for therapeutic production. BMC
Systems Biology, 5(1), 122.

atomic signature for each atom

collected for all
atoms and sorted

net difference between the products and the substrates
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Task:
If the reaction rules are used to create extended metabolic space
it becomes larger when..?

a) dimension parameter is smaller
b) dimension parameter is bigger



 Gene/protein databases include
references to enzyme mechanisms
(e.g. EC numbers)

 Further candidates (orthologs) by
genome mining of sequence databases

 Screening candidates’ performances

Selecting candidate enzyme encoding
sequences

doi:10.1038/nrmicro2717

Medema et al. 2012

Orthologs: genes in different species evolved
from a common ancestral gene.
Paralogs: gene copies created by a duplication
event within the same genome.

Slide adopted from Merja Oja



Synthetic pathway to pinocembrin to E.coli
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Alternative enzyme options result in different pinocembrin titers
Pathway optimization could involve optimizing the enzyme levels or the actual
enzymes

Figure from Lee et al. Nature Catalysis 2,18–33(2019) but data from Feher, T. et al.
Biotechnol. J. 9, 1446–1457 (2014).



M. Ilmén et al., Metab. Eng., 2015; M. Oja et al., ISMB Comm J, 2017

Novel machine learning approaches reach beyond
homology based enzyme finding

Autoencoder modelled proteins

Challenge
• Interesting enzymes may lack homology

to known genes
• How should novel enzyme sequences be?
Our strategy
• Complementing conventional sequence

mining with machine learning

Homology based search of isoprene synthases

Public and proprietary sequence resources in use



Frances H. Arnold
received the Noble prize
for directed evolution of
proteins in 2018

https://www.quantamagazine.org/frances-arnold-george-smith-and-
gregory-winter-win-chemistry-nobel-for-directing-evolution-20181003/



Design of new-to-nature proteins
Protein structure prediction

https://www.youtube.com/watch?v=0LetJMbu7uY

David Baker (U. Washington / HHMI) Part 2: Design of New Protein Functions
https://www.youtube.com/watch?v=ZrAwWx7meTk

David Baker, PhD,
Director of the Institute
for Protein Design
“His research group is a
world leader in
computational protein
design and protein
structure prediction.”
Rosetta computational
prediction and design
method

https://www.rosettacommons.org/
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Task: Find out who are DeepMind and what was the
breakthrough they demonstrated in 2020 – Let’s discuss
this tomorrow



Criteria for choosing pathways for experimental
implementation?

 Yield

 Thermodynamics

 Pathway length

 Number of new-to-nature reactions

 Possible host

 Toxicity
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Tasks:
How do get the theoretical yield of the target compound
for a candidate pathway?
Could this pathway be used to produce 3-
hydroxypropanoate in a yeast host?
acetyl-CoA + CO2 + NADH + H+ <=> 3-oxopropanoate + CoA + NAD+
3-hydroxypropanoate + NAD+ <=> 3-oxopropanoate + NADH + H+

(https://equilibrator.weizmann.ac.il/)



Synthetic pathway design

27/04/2021 VTT – beyond the obvious 49Figure from Finnigan et al. Nature Catalysis
volume 4, pages98–104(2021)

Pathway search in
• Known (bio)chemical reactions
• Extended metabolic space
-> in graph or in genome-scale
metabolic model

Candidate enzyme sequences from
• Homology based search in

sequence resources
• Machine learning beyond sequence

features
• Directed evolution
• Design of new-to-nature (Near

Future?)

Pathway ranking
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Conversion to a mathematical representation

Stoichiometric matrix

𝑑𝑿
𝑑𝑡

= 𝑺 ȉ 𝒗 = 𝑺 ȉ 𝒇(𝒆 𝒕 , 𝒔 𝒕 ,𝒑) (Equation 1)

Obeying the law of conservation of mass,
metabolite mass balances constrain metabolic phenotypes

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
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Steady state assumption linearizes the mass balances

𝑑𝑿
𝑑𝑡

= 𝑺 ȉ 𝒗 = 𝑺 ȉ 𝒇(𝒆 𝒕 , 𝒔 𝒕 ,𝒑) = 0 (Equation 2)

The linear system is lighter to solve and free of kinetic equations and parameters
Additional constraints introduced to obey the second law of thermodynamics

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
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Linear optimization can be used to identify optimal
metabolic states

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015

maximize (or minimize) 𝒄′ ȉ 𝒗

subject to 𝑺 ȉ 𝒗 = 0 (Equation 3)
v,lb < v < v,ub

Flux Balance Analysis (FBA) Varma and Palsson, 1993; Varma and Palsson, 1994
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Linear optimization can be used to identify optimal
metabolic states

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015

maximize and minimize 𝑣𝑖

subject to 𝑺 ȉ 𝒗 = 0 (Equation 3)
𝒄′ ȉ 𝒗 ≥ α
v,lb < v < v,ub

Flux Variability Analysis (FVA) Mahadevan et al. 2003

 While the objective has the optimal
value other fluxes may vary

 The ones that are non-zero are
essential for the optimal value of the
objective

α is the optimal value
of the inital objective

𝒄′ ȉ 𝒗 = α

𝒄′ ȉ 𝒗 ≥ α



1. Design of engineering strategies for
optimizing production
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From laboratory demonstration to industrial feasibility

Nielsen J and Keasling JD. Cell 2016 164, 1185-1197DOI: (10.1016/j.cell.2016.02.004)

Review on possibilities: Lee SY et al. (2019) https://www.nature.com/articles/s41929-018-0212-4



Microbial metabolism is optimized in evolution for
survival and growth



Determinants of industrially feasible
production:
1. YIELD
2. TITER
3. VOLUMETRIC PRODUCTIVITY
4. SPECIFIC PRODUCTIVITY

Task: what are the units of these?



1. YIELD:
g product/g substrate

2. TITER:
g product/l

3. VOLUMETRIC PRODUCTIVITY:
g product/ (l h)

4. SPECIFIC PRODUCTIVITY:
g product/ (g biomass h)



g product/ (l h) =
g product/ (g biomass h) * g biomass/ l



If production draws substantial resources from growth,
PRODUCTIVITIES remain low and industrially infeasible

Batch process Monod model simulation for an example of
a small molecule heterologous product in S. cerevisiae



In silico design of engineering strategies using
genome-scale metabolic models

Jouhten P. et al. Metab Eng. (2017)

Growth-product coupling
Algorithms use genome-scale metabolic models for identifying
knock-out targets

61

Push-pull strategies
Algorithms use genome-scale metabolic models for identifying
deletion and re-regulation targets

Jouhten P. et al. unpublished work with Kiran Patil, EMBL Heidelberg

Current
phenotype

Optimized
phenotype

• Growth-product coupling: the cells can only grow if they produce
• Push-pull strategies: expression levels are modified to push and pull more

resources to production



Growth-product coupling elegantly aligns biological and engineering
objectives through network reduction

OptKnock: Burgard et al. (2003)
OptGene: Patil et al. (2005)

Slide modified from
Kiran Patil



Growth-product coupling allows using adaptive
laboratory evolution for improving production

Glucose

G-6-P

F-1,6-P

G-3-P

DHAP

Glycerol biosynthesis

Pyruvate Acetaldehyde Ethanol

Acetate

PyruvateM Ac-CoAM

MalateM CitrateM

SuccinateM

Citric acid cycle

IsocitrateM

Pentose Phosphate
Pathway

3-P-hydroxy
pyruvate

3-P-
serine

Serine

5,10-
MetTHF

Glycine

Glyoxylate

Succinate

Malate

Ac-CoA

Citrate

Isocitrate

L-threonine

Acetaldehyde

O-P-L-homoserine

L-homoserineL-aspartate

3-P-Glycerate

ser3, ser33

FumarateM

sdh3

AGX1

ICL1

GLY1

THR1

Otero et al. PLoS One. (2013) 8:e54144.

Proof of concept: succinate production in S. cerevisiae

Gly auxotrophic
Gly prototrophic

ALE
To recover from Gly
auxotrophy

Slide from Kiran Patil
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Tasks:
Which determinants of industrial feasibility can be
improved in growth-product coupled strains using
adaptive laboratory evolution?

a) Product yield
b) Productivity
c) Fitness of the strain



Pathway optimization improved vanillin production only
after designed optimization of network

Brochado et al. (2011, 2013). Dr. Kiran Patil in collaboration with Evolva A/S (Denmark)

• Overall 5-fold
productivity
improvement

• Project continuation
@ Evolva A/S:
commercial
production

Synthetic vanillin pathway

Experimental validation

Aromatic
amino acids

GDH1

GDH2

L-glutamate

Ethanol

PDC1

3DSD ACAR hsOMT UGT

Vanillin
-D-glucoside

NADPH

ATP
NADPH

PAC PAL VG

Slide from Kiran Patil



Platforms for genome-scale metabolic model
manipulations and simulations

Platform Description Link
COBRApy Python package https://opencobra.github.io/cobrapy/

OpenCOBRA Matlab functions https://opencobra.github.io/cobratoolbox/stable/

COBRA.jl Julia package https://opencobra.github.io/COBRA.jl/stable/

Sybil R-package https://rdrr.io/cran/sybil/man/sybil-package.html

CAMEO COBRApy compatible platform with in silico metabolic
engineering tools

https://cameo.bio/

BIOMET Toolbox Web based platform with tools for reconstruction and
analysis of models

http://biomet-toolbox.chalmers.se/

MetaFlux GUI or lisp API for model reconstruction and FBA http://bioinformatics.ai.sri.com/ptools/metaflux.shtml

OptFlux Java based tool for in silico metabolic engineering http://www.optflux.org/

CellNetAnalyzer GUI for model analysis using elementary flux modes
approach, Matlab based

http://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html
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FBA derived tools
demonstrated in strain design

Methods for designing genetic engineering
strategies (e.g. growth-product coupling) for
wetlab metabolic engineering
 gene deletion(s)

• OptKnock [Burgard, et al. 2003]
• OptGene [Patil et al. 2005]
 gene additions / deletions

• OptStrain [Pharkya, et al. 2004]
 gene overexpressions / known down

• e.g. OptForce [Ranganathan, 2010]
 FSEOF for overexpression by scanning towards

increasing production, [Choi et al. 2010]
 K-OptForce includes kinetics, [Chowdhury et al. 2014]
 tSOT, considers gene expression data, [Kim et al.

2016]


