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This lecture will introduce

1. Metabolic phenotype prediction and estimation using genome-
scale metabolic models

2. Design of synthetic metabolic pathways

3. Design of engineering strategies for optimizing production



1. Metabolic phenotype prediction and
estimation using genome-scale metabolic models



Why is metabolism relevant for synthetic biology? m

Metabolism = (bio)chemical reactions involved in sustaining a living state of cells
and an organism

= Metabolism generates precursors for product compounds but also for circuit
components

= Metabolism generates energy and redox power sz TEAE
= Metabolism is involved in the regulation of cells

Wikipediiét



Active metabolism m

Conventional view Current understanding

Nutrients Nutrients

_1 ”Passive metabolism” "Active metabolism”
Sensing of ——
nutritional state 3 |

1 . Signaling  Sensing of
Signali Metabolism [ «—— nutritional state
ignaling \ /

Gene expression and IR "2 Gene expression and
protein function o ' protein function

!

Phenotype

[ Metabolism ]

!

Phenotype

Slide from Jaakko Mattila



Modelling needed for eIucidating metabolic states m

Genome-scale metabolic TN
network of Baker’syeast = .-t

Metabolic state = metabolic phe'notyp'e:, qu{'éry defined, fluxes and metabolite
concentrations or just the state of some specific feature



Assembly of genome-wide metabolism

REACTOME ASSEMBLY

Compounds
Pathways Reactions \“/
O 0
h
nadiph Gene-protein
o2 relationships
ACTNMO | 571
?tha }
Onadp 1571.1
|
@

—_—
ACTLMO ACTNMO
— ——

Chromosomes Contigs Reads Base pairs

(i e
= LN~

GENOME ASSEMBLY

Figure from O’Brien et al. 2015
27/04/12021 VTT — beyond the obvious https://doi.org/10.1016/j.cell.2015.05.019 7




Conversion to a mathematical representation

| Stoichiometric matrix

Al1l | 1
o B 1 -1
RZ/ \RS é Cc 1 1
o o - :'E D 1|1 1
R9/ Rs/ \RS = e 1]t -
o o o R1 R2 R3 R4 R5 R6 R7 RS8 R9
R4 l R7 l l R9 Reactions
Figure modified by
Obeying the law of conservation of mass, Tuula Tenkanen from
. ] . O’Brien et al. 2015
metabolite mass balances constrain metabolic phenotypes
dx _
TS V=S f(e(t),s(t),p) (Equation 1)

27/04/2021 VTT — beyond the obvious 8



Steady state assumption linearizes the mass balances m
dX

—=S5-v=5-f(e(t),st),p) =0 (Equation2)

F 3
v2

Constraints:
1)Sv=0 Allowable
2)vlb<v<vub solution space

Figure modified by
Tuula Tenkanen from
O'Brien et al. 2015

vl

The linear system is lighter to solve and free of kinetic equations and parameters
Additional constraints introduced to obey the second law of thermodynamics

27/04/2021 VTT - beyond the obvious



Linear optimization can be used to identify optimal
metabolic states

Objective: Objective:
Maximize v1 Maximize v2

Optimal
solution

l v2

Optimal
solution

v2

Allowable Allowable

solution space solution space

Figure modified by
Tuula Tenkanen from
O'Brien et al. 2015

vl vl
Flux Balance Analysis (FBA)  varma and paisson, 1993; varma and Palsson, 1994

maximize (or minimize) ¢’ - v

subject to S.-v=0 (Equation 3)
v,Ib <v<v,ub

27/04/2021 VTT — beyond the obvious 10



Task:
What are the benefits arising from the steady state assumption?
a) kinetic parameters are not needed
b) linear problems are easier to solve
¢) metabolism is not dynamic
d) metabolite concentrations are not variables

27/04/2021 VTT — beyond the obvious 11



Artificial reaction(s) forming biomass allows growth
simulations

: N\\Biomass forming reaction(s)

=»  DNA -

\Oﬂ-—> Ribosome =/

>
PJ-—» Enzyme |
U4

V4 —» Membrane

New cell
biomass

precursors Actual biomass

in model

12

27/04/2021 VTT - beyond the obvious Flgure adopted from O’Brlen et al 2015



What should the artificial biomass reaction(s) include?

product

nutrient
] product
Protein nutrient -
Carbohydrates
Lipids

Nucleic acids

nutrient

» Proportions and exact compositions are species, strain, and
condition dependent

» Biomass equation commonly describes the energy and redox
balancing requirements of synthesizing macromolecules

e Dilution of other intracellular metabolites due to cell division
is neglectable and omitted in simulations

Universally Essential Cofactors in

Prokaryotes

Xavier JC et al. (2017) Metab Eng.

Organic
cofactor(s)

Functi | role

ransport and transfer of hydride
oups.

r
[£
roup:

T
gt

Transport and transfer of hydride
groups.

u

Iniversal methyl donor; generator
of deoxyadenosyl radicals.

Electron tran: radical and
photoreceptor-induced reactions.

Electrophilic catalyst

Transport and transfer of acyl
groups

Transport and donation of C1 units

Making and breaking bonds
between Cand S, O, Hand N
atoms, otably C-C bonds

Electro , radical and
photoreceptor-induced reactions.




Task:
How is microbial growth described in genome-scale metabolic

models?
a) number of cells increase
b) biomass is a product as any other compound produced out
of the cells
¢) energy and redox costs of growth predicted using model

simulations

14

27/04/2021 VTT - beyond the obvious



Metabolic states depend on environment

Exchange reactions define
extracellular environment

Growth medium
]

Extracellular [e]
e.g., flask with medium

Intracellular [c]

Transport reactions
[c] <-> [e]

Including biomass

15

27/04/2021 VTT - beyond the obvious FIgUI’e adopted fl’0m O’Bnen et al 2015



Specific fluxes m

Flux units mmol/(g CDW h)
/ Production of the desired compound
0, uptake 4B, sigal! Since the artificial biomass
it e ' :]—-‘ Lrowh reaction is defined as mmoles
Nutrient b uptake ————> . \ of precursors for 1 g CDW

Production of compound ¢

27/04/2021 VTT — beyond the obvious 16



Prediction vs estimation of metabolic state?

Production of the desired compound

B

0, uptake —— 5,
Nutrient a uptake =————s 1_‘ Growth
Nutrient b uptake — \

Production of compound ¢

When arbitrary constraints are used, yields can be predicted
When empirical rates are used as constraints, other rates can be estimated
or predicted

27/04/2021 VTT — beyond the obvious 17



Task:
How is growth environment considered in the genome-scale
metabolic model simulations?
a) It Is described in the manuscript
b) it is encoded in the exchange flux bounds
c) if experimental uptake rates are known, fluxes can be
estimated
d) if experimental uptake rates are not known, nothing can be
predicted

27/04/2021 VTT — beyond the obvious 18



FBA simulations optimizing growth predict well

experimental pheno

Lire of
Optimality

y=001%+ 204
R2 =092

20

OUR

¥=1516x + 1.671 P i y = 1.5195% + 1.5705

Growth rate

Growth rate

0.35 -

03| y=0022x-0034

0.25 4 ””::, E

0.2 4 -

- y=0.0229x - 0.0531

08 g2 RZ= 0.8666

0.1 4

0.05 -

O T
Acetate uptake rate

0.35 -

03 |y=0022x-0066 o — |
0.25 ,

0.2 | -
05 L= T y=0.0233x - 0.0997

R?=0.7990

0.1 |

0.05 |
0 | |

o 12 4 18 18 20

Oxygen uptake rate

in @ 2001 Nature Publishing Group http://blotech.nature.com

RESEARCH ARTICLES

In silico predictions of Escherichia coli
metabolic capabilities are consistent
with experimental data

Jeremy S. Edwards'?, Rafael U. Ibarra’, and Bernhard O. Palsson'*




Manually curated models for model organisms

For example

Escherichia col

Bacillus subtilis
Corynebacterium glutamicum
Saccharomyces cerevisiae
Other yeasts (figure)

Human

Mouse

Yeast Metabolic models

2003 2004 2005 2006 2008 2009 2010 201 2012 2013 2014 2015 2016

RefRec | |iBKSces0| SPOMBEL CoReCo CoReCo
i0D907

iFF708 —

Castillo S, Patil KR, Jouhten P. Yeast Genome-Scale Metabolic Models for
Simulating Genotype-Phenotype Relations. DOI:10.1007/978-3-030-13035-0_5



Model reconstruction automatically from genome m
either bottom-up or top-down

Functional genome C Bottom-up reconstruction D Top-down reconstruction

annotation for reaction ) e o

\‘”71 o »o [’I‘\ e o
scores ohe L »

) objective: growth . reaction
apll medium: ® @ Kaning scores
o
yo I o »o < oo
obe Ly , HHZ@ e

S o

Machado et al. Fast automated reconstruction of genome-scale metabolic models
for microbial species and communities. Nucleic Acids Res. (2018) 46:7542-7553.
doi:10.1093/nar/gky537.



CarveMe for top-down reconstruction of m
bacterial models

CarveMe: Machado et al. Fast

D Top-down reconstruction automated reconstruction of

® ® . genome-scale metabolic models for
< o— microbial species and communities.
ﬁ-=,/ /T\ - Nucleic Acids Res. (2018) 46:7542-
> Ml g 4/'\ 7553. doi:10.1093/nar/gky537.
manual curation y ~o—>I -
universal universal ¢ Available as python package:
draft model model Gisvinig reaction i https://github.com/cdanielmachado/
seores carveme

DD | e
QDO

22



Eukaryotic metabolism is compartmentalized m

Eukaryote Prokaryote

Membrane- Mitochondrion
enclosed nucleus

Nucleoid Capsul
psule
Nucleolus (some prokaryotes)

Flagellum

Cell Wall

Cell Membrane .
(in some eukaryotes)

National Center for Biotechnology Information, https://www.thoughtco.com/types-of-cells-1224602 23



Novel CarveFungi for eukaryotic model reconstruction m
by predicting enzyme subcellular localizations

Fungal genome-scale metabolic model reconstruction pipeline

De novo genome assembly

V

Gene finding

Y \/

EC annotation and | Novel deep learning

~ 5000
reactions

SCOMNG model for protein
(EggNOG, Huerta-Cepas : : G
etal. 2017) localization prediction

‘ ‘ ‘ Unpublished

CarveMe (Machado et al. 2018) for species-specific model carving work




Task:
Why is model reconstruction more challenging for eukaryotic
than for prokaryotic species?

a) it cannot be done top-down

b) subcellular compartment membranes are not permeable to
many compounds

¢) enzyme subcellular localization varies between species

27/04/2021 VTT — beyond the obvious 25



Recent literature

1] Hmhm:

Reconstructing organisms in silico:
genome-scale models and their
emerging applications

Xin Fang', Colton J. Lioyd® and Bernhard O. Palssongy'25=

https://www.nature.com/articles/s41579-020-00440-4

26
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1. Design of synthetic metabolic pathways

27



Synthetic pathway for vanillin production in yeast

Erythrose-4-phosphate

COOH

OH - (o] /0 (0]
UDP-
HO /O NADPH SAM Glucose
- — — -
3DSD OH OH 0 0
ACAR+
S~ OH PPTase OH o OH | ] 9 0 ‘
HO o] OH
I N Protocatechuic - Vanillin B-D-
Dehydroshikimic acid Protocatechuic acid aldehyde Vanillin HO Ghstsside
l s g OH
1 | i VA4 ™ _
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL 3




Synthetic pathway for vanillin production in yeast

3-dehydroshikimate
dehydrogenase

Erythrose-4-phosphate

4 B 5
| B
OH COOH ) _-0 0
ATP UDP-
HO /O NADPH SAM Glucose
— — — -
3DSD OH OH 0 0
ACAR+
S~ OH PPTase OH o OH l ] 9 0 |
HO (o] OH
Dehydroshikimic acid Protocatechuic acid Pro;;?;:;::uic Vanillin HO VZTJIL:'S:::.
l OH
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL 3




Synthetic pathway for vanillin production in yeast

Aromatic carboxylic
acid reductase

Erythrose-4-phosphate

COOH
/0 (0]
ATP P UDP-
NADPH Glucose
ﬁ ﬁ o
3DSD OH 0 0
ACAR+
OH PPTase i OH l ] 9 0 |
HO OH n
Dehydroshikimic acid Protocatechuic acid Pro;;?;:;::mc Vanillin HO VZTJIL:'S:::.
l OH
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL 3




Synthetic pathway for vanillin production in yeast

O-methyltransferase
Erythrose-4-phosphate

COOH

OH (o] (0]
ATP UDP-
HO /O NADPH SAM Glucose
— — — -
3DSD OH OH 0 0
ACAR+
S~ OH PPTase OH o OH l ] 9 0 |
HO (o] OH
Dehydroshikimic acid Protocatechuic acid Pro;;?;:;::uic Vanillin HO VZTJIL:'S:::.
l OH
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL 3




Synthetic pathway for vanillin production in yeast

Phosphopantetheinyl transferase

Erythrose-4-phosphate

COOH
/0 (0]
ATP P UDP-
NADPH Glucose
ﬁ q o
3DSD OH 0 0
ACAR
OH PPTase i OH l ] 9 0 |
HO OH n
Dehydroshikimic acid Protocatechuic acid Pro;;?;:;::mc Vanillin HO VZTJIL:'S::E.
l OH
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL i




Synthetic pathway for vanillin production in yeast

Glycosyl transferase
Erythrose-4-phosphate

COOH

OH - 0 /0 (0]
UDP-
HO /O NADPH SAM Glucose
— — — -
3DSD OH OH 0 0
ACAR+
S~ OH PPTase OH o OH l ] 9 0 |
HO (o] OH
Dehydroshikimic acid Protocatechuic acid Pro;;?;:;::uic Vanillin HO VZTJIL:'S:::.
l OH
Aromatic Amino acids
Hansen et al., AEM, 2009
Brochado et al., 2010 Slide from Dr. Kiran Patil

EMBL 3




Synthetic pathway design

b

Manual

(1) Pathway

generation
SCENCE| s’ x x| 4
identification

X

i

(3) Pathway
selection = <

27/04/2021 VTT - beyond the obvious

Automated
-
B % NADPH 3& ¢

1H 03 1H 03 @
O
@ (9]
OH
A HO OH
O
(o]
Pathway Score
1 5.5
2 4
3 3.7

Figure from Finnigan et al. Nature Catalysis
volume 4, pages98-104(2021)
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Metabolic reaction databases

thea

https://www.genome.jp/kegg/ https://www.rhea-db.org/

@METACYC K K X

NN
https://metacyc.org/ ) (

https://www.metanetx.org/

27/04/2021 VTT — beyond the obvious 35



Task: Which reactions are needed to convert 3,4-
dihydroxybenzoate to cis,cis-muconate? What are the
proteins (uniprot entries) that could be used?

https://www.genome.jp/kegg/ https://www.rhea-db.org/

https://metacyc.org/ https://www.metanetx.org/

Protein database: https://www.uniprot.org/

27/04/2021 VTT - beyond the obvious
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Enzymes may be promiscuous

= Enzymes may catalyze alternative reactions

« catalytic promiscuity = "ability of an enzyme to catalyze a secondary reaction at the
same active site where its primary activity occurs, and the secondary activity has a
different mechanism”

* substrate promiscuity = substrate ambiguity

0 S H” N “OH - )J\/
\D_ ) ._i_ 4. ¥ I
Reactions Catalyzed by 2-dehydro-3-deoxy-D-gluconate D-glyceraldehyde pyruvate
KDG aldolase from A "
Sulfolobus solfataricus
Dafj““x‘ﬁ B s ” DJ\K
) + |
5 128 . alycolaldehyde g
2-dehydro-3-deoxy-L-arabinonate pyruvate

http://www.jbc.org/content/279/42/43886.full.html
http://www.jbc.org/content/285/44/33701.long




Example of catalytic promiscuity: m
4-Oxalocrotonate Tautomerase

Primary reaction oy Ccoy
# ~OH | 0
= https://chemistry-
COy COy" europe.onlinelibrary.wiley
1 2 .com/doi/full/10.1002/cbi
.201000633
2-hydroxy-2,4-hexadienedioate 2-0x0-3-hexenedioate ¢
Secondary reaction: aldol condensation
0 0 O OH EE 0
i
3 10 14 15
acetaldehyde benzaldehyde cinnamaldehyde

27/04/2021 VTT — beyond the obvious 38



Reaction rules model possible
enzyme catalyzed reactions

= Rules model similarities to known reactions (i.e.
similarities of reactants)

= Assume that if the core of the reaction (where the
bonds break) remains the same then an enzyme could
be found/built for the novel reaction

= Define different dimensions of the core
= Reaction rules create extended metabolic space

Table 1 Reactions in the EMRS

height h reactions % increase from canonical
2 9083 17.72%
3 7882 2.15%
4 7800 1.09%
5 7752 0.47%
7725 0.12%
canonical 7716 M6

Number of novel generated putative reactions in the EMRS for different
heights h.

Retropath method reaction signature

atomic signature_fo_r_ _each atom Molecular signature

4 (I )
1 {
HZN 1 E ) [
'o(C)= ; (aech
@ 1 (=1 )
Atomic 1 CLed)
signature / I \
h=1 90 @ @ 1) ) collected for all
& atoms and sorted
h=2 . [€]¢ ( ) )
B) o

8 [C]([C]IC])

2 [C][[C][N_]J 4 [C]([C][C])

1 [cycreirng)

[CI([C][O]=[0O]) 16(P,) = 1a(P,) =
1= 217

[N]([C])

' 1 [0]1(=[C])
2 [0](=[C]) _

1 rojcren)

Reaction signature

'0(R) = "0(Py) + '0(P,) - '0(S;) - '0(S;) =

Carbonell, P., Planson, A.-G., Fichera, D., & Faulon, J.-L. (2011). A retrosynthetic
biology approach to metabolic pathway design for therapeutic production. BMC
Systems Biology, 5(1), 122.




Task:
If the reaction rules are used to create extended metabolic space
It becomes larger when..?

a) dimension parameter is smaller

b) dimension parameter is bigger

27/04/2021 VTT — beyond the obvious 40



Selecting candidate enzyme encodi_n}g @ m
Se q U e n CeS Characterized model gene Characterized enzyme

with structure

= Gene/protein databases include e
references to enzyme mechanisms v GRFEYLAFPANFTDEDR
(e.g. EC numbers) BLAS g R i o

Ga-ERLANRENFRCOENT
G- ERLAFENS FEEDERY

= Further Car_'ld.idates (OrthOIOgS) by ctive site residue extraction
genome mining of sequence databases ' — - )
= Screening candidates’ performances —— —
—
Multiple sequence Support vector machine
alignment and phylogeny to distinguish between
l substrate 5r1e.~ciﬁ::ile5

Orthologs: genes in different species evolved Putative orthologues | | Enzymes with putatively
from a common ancestral gene. T BEEREay | 'dentical substrate specificity

Paralogs: gene copies created by a duplication
event within the same genome.

Medema et al. 2012
doi:10.1038/nrmicro2717
Slide adopted from Merja Oja



Synthetic pathway to pinocembrin to E.coli m

l- Phenylalanine trans-Cinnamate Cinnamoyl-CoA Pinocembrin chalcone Pinocembrin
E. coli metabolism @

HO OH
J\/\© PAL/TAL &/\Q 4CL &/\© CHS l > I “ohl
EC 4.3.1.25 EC6.2.1.12 EC23.174 OHO EC5516 ©OHO
<
hPAL (ATH) % h4CL(SCO) ————= hCHS(ATH) —————= hGHI(ATH) 5.078mg |
N, \ 3
m4CL (ATH) ICHI (Sma) 24139 mg

Alternative enzyme options result in different pinocembrin titers
Pathway optimization could involve optimizing the enzyme levels or the actual
enzymes

Figure from Lee et al. Nature Catalysis 2,18-33(2019) but data from Feher, T. et al.
27/04/2021 VTT — beyond the obvious Biotechnol. J. 9, 1446-1457 (2014). 42



Novel machine learning approaches reach beyond
nomology based enzyme finding

Uniprot
(SwissProt/TrEMBL)

1
1
1
1
1
1
1
1
v
1
e
TN —
| NcBI proteins
| (nr, env_nr, pat)
:
1 —
L —
c;~ee—,
i| NCBI nucleotides
|| (nt, tsa, env_nt, pat,
' chromosome)
1
Ty
~
! JGI genomes
: (Fungi)
1
1
v
1
<l S
1
: In-house RNA-seq
: (Fungi)
1
v
1
1
1
1
1
1
1
1
1
1
1

M. liménetal., Metab.Eng., 2015; M. Oja et al., ISMB Comm J, 2017

Challenge

Interesting enzymes may lack homology
to known genes

How should novel enzyme sequences be?

Our strategy
Complementing conventional sequence
mining with machlne Iearnlng

us BAF02831 ¢
ia AAP40638.1
o swpueit 3

B

°

%

.v2
" '.o - P ¥ ad osll
pi =
. e od woll
s i) PLECI 6% s m b0
é& ’\[.c"" o o8 2.0 .0 el
{'; o N SRSl S e
‘,!eo ®e o LY Q_,,:.
ra% °% s * ot L s

“lﬂﬂoo o R of 00 ° @a® o cae ll
A 00 ® s © bt
LA SaE e s [l
e
e 2,

14 BAH36520
13 BAH36524

Racit iyout

AAA164271_Penicilum _chrysogenum GH10 EC3218
% 485936811 Reniclinim_chrysogenum GH10 EC 3218
L a#72523.1_Rhizopus_oryzae GM10 ECI2.18




Frances H. Arno
received the No

d
nle prize

for directed evo
proteins in 2018

ution of

https://www.quantamagazine.org/frances-arnold-george-smith-and-
gregory-winter-win-chemistry-nobel-for-directing-evolution-20181003/

THE WORK FLOW FOR THE DIRECTED EVOLUTION OF ENZYMES

Random mutations are introduced in the
gene for the enzyme that will be changed.

NA

MUTATION

“ff [l et [ et
off il et e

RN/
Al e

New random mutations are introduced
in the genes for the selected enzymes.
The cycle begins again.

©Johan Jarnestad/The Royal Swedish Academy of Sciences

The genes are inserted in bacteria,
which use them as templates and
produce randomly mutated enzymes.

ENZYMES
WITH MUTATIONS

Spd

P‘F- The changed
%@T __i_ﬁ’ 3 enzymes are tested.

Those that are
most efficient

at catalysing the

test  desired chemical

PLATE reaction are
_____ . e e selected.
e ® e
m (]
e @
; DISCARDED
| ENZYME

»
%




Design of new-to-nature proteins
Protein structure prediction  nttps//wwirosettacommons org/

TWO RESEARCH PROTEIN STRL;)CTURE David Baker, PhD,
PREDICTION . ) )
Director of the Institute

PROBLEMS
/ \ for Protein Design
Afmig Ackt Seguetics “His research group is a
world leader in
computational protein
design and protein
structure prediction.”
Rosetta computational
prediction and design
method

wes” Protein Tertia
\ / Structure

M — PROTEIN

P L] 'ID 1:20 /2121

David Baker (U. Washington / HHMI) Part 1: Introduction
to Protein Design
https://www.youtube.com/watch?v=0LetIMbu7uY

David Baker (U. Washington / HHMI) Part 2: Design of New Protein Functions
https://www.youtube.com/watch?v=2rAwWx7meTk



Task: Find out who are DeepMind and what was the
breakthrough they demonstrated in 2020 — Let’s discuss
this tomorrow

27/04/2021 VTT — beyond the obvious 46



Criteria for choosing pathways for experimental m
Implementation?

= Yield

= Thermodynamics

= Pathway length

= Number of new-to-nature reactions
= Possible host

= Toxicity



Tasks:

How do get the theoretical yield of the target compound
for a candidate pathway?

Could this pathway be used to produce 3-

hydroxypropanoate in a yeast host?
acetyl-CoA + CO2 + NADH + H+ <=> 3-oxopropanoate + CoA + NAD+
3-hydroxypropanoate + NAD+ <=> 3-oxopropanoate + NADH + H+

(https://equilibrator.weizmann.ac.il/)

27/04/2021 VTT - beyond the obvious
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Synthetic pathway design

Manual Automated Pathway search in
* Known (bio)chemical reactions

CAR
1) Paihway . /L Rl Sy g » Extended metabolic space
2 e . -
> -
generation s Ao, I in graph or in genome-scale
metabolic model
o O
_ O Candidate enzyme sequences from
= e A OH * Homology based search in
(2) Enzyme ‘ _ O sequence resources
identification @ i 0o * Machine learning beyond sequence
0 features
» Directed evolution
Pathway Score * Design of new-to-nature (Near
1 5.5 Future?)
(3) Pathway 2 4
- 3 3.7 :
selection Pathway ranking
2710412021 VTT — beyond the obvious Figure from Finnigan et al. Nature Catalysis 49

volume 4, pages98-104(2021)



Conversion to a mathematical representation

| Stoichiometric matrix

Al1l | 1
o B 1 -1
RZ/ \RS é Cc 1 1
o o - :'E D 1|1 1
R9/ Rs/ \RS = e 1]t -
o o o R1 R2 R3 R4 R5 R6 R7 RS8 R9
R4 l R7 l l R9 Reactions
Figure modified by
Obeying the law of conservation of mass, Tuula Tenkanen from
. ] . O’Brien et al. 2015
metabolite mass balances constrain metabolic phenotypes
dx _
TS V=S f(e(t),s(t),p) (Equation 1)

27/04/2021 VTT — beyond the obvious 50



Steady state assumption linearizes the mass balances m
dX

—=S5-v=5-f(e(t),st),p) =0 (Equation2)

F 3
v2

Constraints:
1)Sv=0 Allowable
2)vlb<v<vub solution space

Figure modified by
Tuula Tenkanen from
O'Brien et al. 2015

vl

The linear system is lighter to solve and free of kinetic equations and parameters
Additional constraints introduced to obey the second law of thermodynamics

27/04/2021 VTT - beyond the obvious
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Linear optimization can be used to identify optimal
metabolic states

Objective: Objective:
Maximize v1 Maximize v2

Optimal
solution

l v2

Optimal
solution

v2

Allowable Allowable

solution space solution space

Figure modified by
Tuula Tenkanen from
O'Brien et al. 2015

vl vl
Flux Balance Analysis (FBA)  varma and paisson, 1993; varma and Palsson, 1994

maximize (or minimize) ¢’ - v

subject to S.-v=0 (Equation 3)
v,Ib <v<v,ub

27/04/2021 VTT — beyond the obvious 52



Linear optimization can be used to identify optimal
metabolic states

Objective: Objective:
Maximize v1 Maximize v2
Optimal & c-v>a
1 solution Optimal
v2 v2 solution
Allowable Allowable
solution space solution space _ .
Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
vl vl

Flux Variability Analysis (FVA) Mahadevan et al. 2003

maximize and minimize v; = While the objective has the optimal

subject to S-v=0 (Equation 3) value other fluxes may vary
c-v>a o is the optimal value = The ones that are non-zero are
vib < v_< v.ub of the initaFI) objective essential for the optimal value of the
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1. Design of engineering strategies for
optimizing production
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From laboratory demonstration to industrial feasibility

B A Target for industrial
implementation

Final

Novel
technologies

Existing
technologies

Titer, rate, yield (TRY)

Proof of principle strain

5-10 years
(>200 person years)

Cc

Artemisinin

U.C. Berkeley,
Amyris, Sanofi

10 years; USD50M

1, 3-propanediol
(PDO)

HO OH

DuPont, Genencor,
Tate and Lyle

15 years; USD130M

Nielsen J and Keasling JD. Cell 2016 164, 1185-1197DOI: (10.1016/j.cell.2016.02.004)

Review on possibilities: Lee SY et al. (2019) https://www.nature.com/articles/s41929-018-0212-4




Microbial metabolism is optimized in evolution for
survival and growth

-

.# 'Bacterialcells
§ il Al

b

/
’
i

Yeast cells—__ ’) g
!




Determinants of industrially feasible
production:

.. YIELD

. TITER

. VOLUMETRIC PRODUCTIVITY
. SPECIFIC PRODUCTIVITY

Task: what are the units of these?




YIELD:

g product/g substrate
TITER:

g product/I

VOLUMETRIC PRODUCTIVITY:
g product/ (I h)

SPECIFIC PRODUCTIVITY:

g product/ (g biomass h)




g product/ (I h) =
g product/ (g biomass h) * g biomass/ |




If production draws substantial resources from growth,
PRODUCTIVITIES remain low and industrially infeasible

N

PRODUCTIVITY g/(l h)
o [
O U Rk U N U W

o x

0,2 0,4 0,6 0,8 1
PRODUCT YIELD mol/mol

Batch process Monod model simulation for an example of
a small molecule heterologous product in S. cerevisiae



In silico design of engineering strategies using
genome-scale metabolic models

» Growth-product coupling: the cells can only grow if they produce
» Push-pull strategies: expression levels are modified to push and pull more

resources to production

Growth-product coupling
Algorithms use genome-scale metabolic models for identifying
knock-out targets

a Metabolic intermediate

1

Anchor reaction

Essential Product precursor
precursor that cannot be
for growth incorporated into cell
biomass
a®

Jouhten P. et al. Metab Eng. (2017)

Push-pull strategies
Algorithms use genome-scale metabolic models for identifying
deletion and re-regulation targets

/\‘E{‘Wh

* production pathway = * production pathway

fua Ol -
Q gm\i'h \‘gm\i:;\ﬂ:h
Current Optimized

phenotype phenotype
Jouhten P. et al. unpublished work with Kiran Patil, EMBL Heidelberg

arowth
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Growth-product coupling elegantly aligns biological and engineering
objectives through network reduction

Bi-level optimization

-

Design Objective

Find k deletions such that maximum product ‘\\
yield is achieved:

such that,

e.g. flux is distributed for

Biological Objective  maximum growth

Evolution driven objective

OptKnock: Burgard et al. (2003)
OptGene: Patil et al. (2005)

Slide modified from
Kiran Patil .



Growth-product coupling allows using adaptive

laboratory evolution for improving production

Proof of concept: succinate production in S. cerevisiae

Glucose 1r

Glycerol biosynthesis ALE |
. l 0.9

’ G-6P ---> Pe”t%S:tEw;Phate To recover from Gly 08 -

y auxotrophy 07 |

DHAP :
v
I F-1,6-P
G-3-P

L-aspartate

————— > L-homoserine

Y Y Y YN o

6
\4
3-P-hydroxy 3-P- O-P-L-homoserine 04 +
3—P—GI)I/cerate > pyrwvate > serine '\ y
E ser3, ser33 Serine L-threonine g I
v 0.2 -
Pyruvate ——> Acetaldehyde —> Ethanol 5 fo_ GLY1
| > Acetate MetTHF Acetaldehyde 01 T
A 0
Pyruvate,, Ac—C(:\ Glycine Specific Growth Maximum Titer
A j AGXL Rate (1/h) (g/L)
MaliteM """" Citrate,, < Citrate  CYOXYlate 7» Malate - M REF 0.33 0.03
s i ) 0 AC-COA Gly auxotrophic |mgp 0.22 0.40
Isocitrate,, ——> lIsocitrate Gly prototrophic | m 8D Evolved 0.13 0.60
_ - " IcLL
«dh3 Succinatey Succinate M 8D Evolved + pICL1 0.12 0.90

N\ Citricacidcycle /

Otero et al. PLoS One. (2013) 8:e54144.

Slide from Kiran Patil



Tasks:
Which determinants of industrial feasibility can be
Improved in growth-product coupled strains using
adaptive laboratory evolution?

a) Product yield

b) Productivity

c) Fitness of the strain

27/04/2021 VTT - beyond the obvious
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Pathway optimization improved vanillin production only

after designed optimization of network

Erythrose-4-phosphate

COOH

& —._.-
ATP
NADPH
3DsD
ACAR

UDP _._._? —
Aromatic
OH Ethanol amino acids ATP
\ UGT NADPH
% PDC1
Dehydroshikimic acid Protocatechulc ecid Brotacechul vanilin vaniIIInBD
aldehyde Glucoside
| 5% gl - NADPH
l h ' R GDH2
J' N 2:.:— L-glutamate
1 - X
Aromatic Amino acids GDH1
Experimental validation i
'g 600 |
| « Overall 5-fold g0 ] | : oeac
.. 8
| productivity £ %0 _I_L TIPAL
| improvement g 20 ’—X_L i I_- j mvG
. . . w 100 — — e — ! S F [
* Project continuation 2 5 L . .
@ Evolva A/S: VGAM VG40 VGOM VG0O*
commercial
production

Slide from Kiran Patil

EMBL i

Brochado et al. (2011, 2013). Dr. Kiran Patil in collaboration with Evolva A/S (Denmark)



For
developers

For end

Platforms for genome-scale metabolic model

manipulations and simulations

users

Platform Description Link
COBRApy Python package https://opencobra.github.io/cobrapy/
OpenCOBRA Matlab functions https://opencobra.github.io/cobratoolbox/stable/
COBRAjl Julia package https://opencobra.github.io/COBRA.jI/stable/
Sybil R-package https://rdrr.io/cran/sybil/man/sybil-package.html
CAMEO COBRApy compatible platform with in silico metabolic | https://cameo.bio/

engineering tools
BIOMET Toolbox | Web based platform with tools for reconstruction and | http://biomet-toolbox.chalmers.se/

analysis of models
MetaFlux GUI or lisp API for model reconstruction and FBA http://bioinformatics.ai.sri.com/ptools/metaflux.shtml
OptFlux Java based tool for in silico metabolic engineering http://www.optflux.org/

CellNetAnalyzer

GUI for model analysis using elementary flux modes
approach, Matlab based

http://www2.mpi-
magdeburg.mpg.de/projects/cna/cna.html
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Table 5. ’Inmpl lrp-nd rprxh er yeast strains whose development has been involved
£Cnome-se

- using g netabolic nulation tools
Produc Spocics Tools Year Ref
FEthanol 5. cerevisiae in house script 2006 | Bro et al. (2006)
| (FBA)
- . - Sesquiterpene S. cerevisiae | MOMA. OptGene | 2000 v .1 lI.|h al
1
d el I IOI Istrated I I I Stral I l d eSI I l Vanillin [ cereminian | MOMA, OptGene, | 2010 ?R ochado t al
OptKnock {2010)
2.3 butancdiol | = cammision | OptKnock [2012 | Ngetal. 2012
|

Methods for designing genetic engineering = e
strategies (e.g. growth-product coupling) for e ey T o
wetlab metabolic engineering

Malate C glabiat: FBA 2013 [ Chen ct al. (2013)

= gene deletion(s) e
. OptKnOCk [Burgard et al 2003] |:\:l,‘:§5 recombinant | P. pastoris [FSEOF MOMA 2014 \mnudl (2014)
* OptGene [Patil et al. 2005] T

* gene aaditions / deletions N
> OptStrain [Pharkya, et al. 2004] —[ser | ;

* gene overexpressions / known down e
* e.g. OptForce [Ranganathan, 2010]

2015 Gold ct al. (2015)

= FSEOF for overexpression by scanning towards e —
increasing production, [Choi et al. 2010] T T T
= K-OptForce includes kinetics, [Chowdhury et al. 2014] s

= tSOT, considers gene expression data, [Kim et al. e T

or glycerol

2 O 1 6] Polymalic acid A. pullulans FBA

FEthanol | 8. stipinis FBA Ve
N7
Triacylglycerol Y. lipopytica FBA 2018 Koivuranta et al
2018)
Lipid R. toruloides FBA 2018 Castaficda et al
o



