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4.1 INTERPOLANT AND APPROXIMATION

Piecewise linear interpolant ( )p x  to dataset  0 0 1 1( , ), ( , ), ,( , )n nx f x f x f  gives the simplest
continuous polynomial representation. Assuming that the dataset is sampling of a
continuous ( )f x , ( )p x  can also be considered as an approximation to ( )f x .

0 1

5

2
43

interpolation error
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SHAPE FUNCTIONS

In the Finite Element Method, linear interpolants to datasets  0 0 1 1( , ),( , ), ,( , )i i n nix x x  
, where {0,1, , }i n   and ji  is the Kronecker delta defined as 1ji   when i j  and

0ji  i j , are called as the linear shape functions ( )iN x {0,1, , }i n  . As an example,
the shape functions on the irregular grid {0,3,4,7,9,10} /10  of 6 nodes on [0,1]   are:
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The datasets  0 0 1 1( , ),( , ), ,( , )i i n nix x x   {0,1, , }i n   correspond to value 1 for grid
point i  the remaining being zeros. The 1n   interpolants to the 1n   dataset are denoted

( )iN x  and called as the shape functions. With this concept the linear interpolant to
dataset  0 0 1 1( , ), ( , ), ,( , )n nx f x f x f  is given by

{0,1, , }( ) ( )i ii np x f N x 

where if {0,1, , }i n   are the values at the grid points. In a typical line segment [ , ]i jx x
,  only the shape functions of grid points i  and j  are non-zeros the shape function and
the interpolant expressions being ( [ , ]i jx x x )

1( ) 1 1 1
( )

i

j i j

N x
N x x x x


     

    
    

 and
T T 1( ) 1 1 1

( )
( )

i i i

j j j i j

f N x f
p x

f N x f x x x


         

         
        

.
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4.2 WEIGHTED RESIDUAL APPROXIMATION

Finding an approximation ( )g x  to function ( )f x  is one the basic tasks in numerical
mathematics. In the Least Squares Method and Weighted Residual Methods, the grid point
values ig of approximation ( ) ( )i ig x g N x  TN g   follow from the steps

Distance: 2 T 2
0 0

1 1( ) ( ) ( )
2 2

L L
g f dx f dx     g N g ,

Minimizer:  Kg F 0    where T
0
L

dx K NN   and
0
L

fdx F N ,

Nodal values: 1g K F .

In practice, the nodal values g  are solved from the linear equation system without matrix
inversion (to avoid excess computational work). The method works in the same manner
irrespective of the series approximation used.
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Interpolant ( )p x  to function ( )f x  is accurate on the grid points but the interpolation
error at the other points is not under control. Least squares method considers all points
of the domain and control the error everywhere as well as possible.

The figure above compares the interpolation (broken-black) and approximation (solid-
black) of ( ) sin(2 / )f x x L  (solid-blue) on irregular grid / {0,2,4,7,9,10} /10x L  of
6 nodes on [0, ]L  . Judging from the figure, approximation ( )g x  gives a better fit to

( )f x  than interpolant ( )p x .

x
L
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Least Squares Method is useful in various tasks in numerical mathematics. One of the
applications is related with the condition for the minimum of  , which can be written
in the form

0
0

L
iN Rdx  {0,1, }i 

where ( ) ( )R g x f x   is called as the residual. In the weighted residual interpretation
of the method, linear equations giving the values of the approximation are obtained as
the weighted residuals with the shape functions. The idea extends to residuals of
differential equations and is one of the starting points for the Finite Element Method for
bar and string model problems.
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EXAMPLE Find an approximation to 2( ) 5 sin( )f x x x [0,1]x  by using: (a) Lagrange
interpolation polynomial (n evenly spaced points), (b) Taylor series (at 0x  and n terms),
and (c) Fourier sine-series (n terms). Consider the cases 3n   and 4n  .

Answer ( )f x  and the approximations are shown in the figure.

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

n = 3 n = 4

exact Lagrange Taylor Fourier
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Lagrange interpolation polynomial is continuous and it coincides with a function on a
given set of points

Tp  N p   where {1 }\
j

i j n i
j i

x x
N

x x


 
     and ( )i ip f x

For the given set of points {0,1,2} / 2x :

T{0 5 / 4 0}p  and T (1/ 2 )(1 ) (0 )(1 ) (0 )(1/ 2 ){ }
(1/ 2 0)(1 0) (0 1/ 2)(1 1/ 2) (0 1)(1/ 2 1)

x x x x x x     


     
N

T 25 (0 )(1 )( ) 0 0 5( )
4 (0 1/ 2)(1 1/ 2)

x xp x x x 
     

 
N p . 

The given (shape) functions can be taken as monomials like ( 1)i
iN x   without affecting

the approximation, but then the recipe is worse from the numerical viewpoint.

recipe!
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A truncated Taylor series is a continuous polynomial whose derivatives coincide with
those of the given function up to a point.

T( )t x  N t    where ( )
0

1 ( )
!

i
iN x x

i
     and

0
( )

i

i x xi
d ft
dx



If the number of terms is chosen to be 3 and 0 0x  ,

0
0
0

 
   
 
 

t   and
2

1

/ 2

x

x

 
 

  
 
 

N    so T( ) 0 0 0 0t x     N t . 

The given functions can be chosen in some other way without affecting the
approximation, but then the recipe is not as good.

recipe!
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Sine-series is a linear combination of sine-functions where the coefficient are given by
the Least-Squares Method (or Weighted Residuals)

T( )s x  N s    where 2 sin( )i
xN i

L L
   and

0
s

L
i if N dx 

 If the number of terms is chosen as 3, the series becomes

2
T

2
2 1 40 15{5( ) }

2 4 9 16



  s    and T 2{sin( ) sin(2 ) sin(3 )}x x x  N

2
T

2
2 1 40 15( ) [5( )sin( ) sin(2 ) sin(3 )]

2 4 9 16
s x x x x   


    N s . 

The criterion for the parameters produces a good approximation. Clearly, considering all
points of the domain in the recipe may be a good idea!

recipe!
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APPROXIMATIONS TO DERIVATIVES

Linear interpolation and shape functions give an alternative way to find difference stencils
for derivatives at the interior points {1,2, , 1}i n  . The weighted average of a derivative
using iN  is just interpreted as an approximation to derivative at point i  (multiplied by x )

Term Weighted residual Stencil

a
0
L

iN adx 1 1( 4 )
6 i i i
x a a a 


 

a
x

 0

L
i

aN dx
x

 1 1

1 ( )
2 i ia a 

2

2
a

x


 0
L iN a dx

x x
 


  1 1

1 ( 2 )i i ia a a
x   


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 The stencils by the weighted residuals with iN and linear interpolant to a  on the regular
grid coincide with the 2:nd order accurate central finite differences for the first and
second derivatives. For the 0:th derivative (function itself)

0

0
0 0 0 10

(2 )
6

L x x
x

xN adx N adx a a
 

    .

1 10
( 4 )

6
i

i

L x x
i i i i ix x

xN adx N adx a a a


 


     {1,2, , 1}i n  ,

0

0
10

( 2 )
6

L x x
n n n nx

xN adx N adx a a





    .

 For the first derivative

0

0
0 0 0 10

1 ( )
2

L x x
x

a aN dx N dx a a
x x

 
  

  
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1 10
1 ( )
2

i

i

L x x
i i i ix x

a aN dx N dx a a
x x


 

 
  

   {1,2, , 1}i n  ,

10
1 ( )
2

L
n n n

aN dx a a
x 


 
 .

Weighted residual approximation to the second derivative uses an integral identity for a
piecewise linear ( )a x

1 10
1( ) ( 2 )i

i

L x xi i
i i ix x

N Na adx dx a a a
x x x x x


 

  
     

      {1,2, , 1}i n  .

The derivation of the bar and string models indicate that at points where derivative is not
continuous, the second derivative in the equation of motion needs to be replaced by a
jump condition. Integral identity

0 0{1,2, , 1} 0
[[ ]] ( ) ( )

L i
i n ni n

Na a a aN N N dx
x x x x x 

   
   

     
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indicates that the jump conditions can be calculated as a weighted average using the
derivative of the shape function as the weight. Jump bracket is a shorthand notation for
the difference of the limit values 0[[ ( )]] lim [ ( ) ( )]i i ia x a x a x      .
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4.3 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext ine 0W W W W       a  is an alternative
representation of the equations of Particle Surrogate Method using the concept of work of
forces acting on a particle. The principle holds also at the limit n    and /x L n  :

Virtual work Particle Continuum

intW ( )e e
e P

a ak x
x x



  
  ( )a ak dx

x x



 
 

extW ( )i
ii I

Fu x
x

 
 ( ) Iaf dx aF 


 

ineW ( )i ii I
ma a x
x

 
 

2

2( )aam dx
t






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Let us start with the Particle Surrogate Method for a string with {0,1, , }i I n   , denote
particle spacing by x , interacting particle pairs p P I I   , and choose 0iw 
whenever i iw w  (known), and denote p i jw w w     when ( , )p i j .

The sum of works done by the internal, external and inertia forces on the displacement

iw  (fixed particles cannot move so 0iw  )

External forces: ext ( )i ii IW w F A xg    

Inertia forces: ine
i i ii IW w m w   
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Internal forces: int
p pp P

SW w w
x

    


External part is obvious as the sum of works of external forces acting on the particles.
Inertia part uses the inertia force interpretation of acceleration term which is moved to
the left hand side of (formally) equilibrium equations of particles. The internal part
follows with some manipulations: particle i  interacts with the neighbors 1i   and 1i 
only. Therefore, virtual work of the internal forces (all particles accounted for as possible
conditions 0iw   can be applied after manipulations)

int
0 1 1 0 3 2 1 3 1( ) ( ) n nW w F w F F w F F w F             .

 Substituting expressions 1 1( ) /i i iF S w w x      and 1 1( ) /i i iF S w w x     for the
left and right neighbour interactions and rearranging

int
1 0 1 0 1 1( )( ) ( )( )n n n n

xW w w w w w w w w
S

      


       
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and, finally, using the notation p i jw w w  

int
p pp P

SW w w
x

    
 . 

Principle of virtual work and  the virtual work expressions give a concise reprentation
of the string and bar equations of the Particle Surrogate Method. Various different
boundary conditions can be included by modification of the expression using the
physical work interpretation.

Finite Element Method uses the linit expressions n    and /x L n   corresponding
to the continuum model. There, linear shape functions are used for a piecewise linear
approximation and the weight function is chosen to be the shape functions of the free
points get the equation of the motion. At the fixed points, equation 0i iw w   is used
instead.
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4.4 FINITE ELEMENT METHOD

Finite Element Method (FEM) is a numerical technique for solving differential equations.
If applied to the model problems on a regular grid of points on the spatial domain

Interior 1 1 1 1( 2 ) ( 4 )
6i i i i i i i

k xa a a F f x m a a a
x    

        


   {1,2, , 1}i n 

Boundary 1 0 0 0 1( ) (2 ) 0
2 6

k x xa a F f m a a
x

       


    or 0 0a a ,

Boundary 1 1( ) (2 ) 0
2 6n n n n n

k x xa a F f m a a
x  

       


    or n na a ,

Initial 0i ia g    and 0i ia h    (for ODE:s of the set).

Then, the outcome is a set of ordinary differential equations of the same type as by the
Particle Surrogate Method.
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In FEM, the starting point is the weighted residual expression implied by the principle
of virtual work. Using a linear piecewise approximation to the transverse displacement
in spatial grid, selecting ia N  , considering the displacement values ( )iw t  as functions
of time, and assuming constant properties, for {0,1, , }i n 

2

2( ) ( ) 0i
i iI

N w wS dx N F N A g dx
x x t


 

  
    

  
     or 0iw w  0t  ,

( ) 0iN w g dx


    and ( ) 0i
wN h dx
t


 

 0t  .

The integral equation and the corresponding initial conditions are used at all points
where displacement is not known. Considering a regular grid, a piecewise linear
approximation to w  in terms of the nodal displacements,  and assuming that g  and h  of
initial conditions are of the same form as the approximation (tacitly accepting the
possible interpolation error due to the simplification).
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1 1 1 1( 2 ) ( 4 )
6i i i i i i

S xw w w Ag x A w w w
x

    


      


   {1,2, , 1}i n  ,

1 0
0 0 1( ) (2 ) 0

2 6
w w x xS F Ag A w w

x
 

  
    


    or 0 0w w ,

1
1( ) (2 ) 0

2 6
n n

n n n
w w x xS F Ag A w w

x
 


  

    


    or n nw w ,

0i iw g    and 0i iw h    (for Ordinary Differential Equations).
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EXAMPLE A string of length L , tightening S , cross section area A , and density  , and
is loaded by its own weigh.  If the ends are fixed and the initial geometry without loading is
straight, find the solution to the transverse displacement by using the Finite Element Method
and a regular grid of points {0,1, , }i n  .

Answer
2

2
( )

2i
AgL i n iw

S n
 

   (limit solution ( ) ( )
2
Agw x x L x
S


  )

L

g

x

z
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 The algebraic equations according to the Finite Element Method, n elements of the same
size /x L n  , and regular node numbering {0,1, , }i n   are given by

1 1( 2 ) 0i i i
S w w w Ag x
x

     


{1,2 , 1}i n     and 0iw  {0, }i n .

The generic solution to the difference equations consists of the generic solution to the
homogeneous equation (trial solution i

iw ar ) and a particular solution (trial solution
2

iw ai ):

2
2

2i
Ag xw a bi i

S
 

   .

Using the equations of the boundary points 0 0nw w    for the constants a  and b

2

2
( )

2i
AgL i n iw

S n
 

  . 
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EXAMPLE Write the equations of motion for the free vibrations of the bar shown by using
the Finite Element Method and determine the frequencies and the corresponding modes of
free vibrations. Use the matrix formulation on a regular grid {0,1,2,3}i . Material
properties ,E   and cross-sectional area A are constants.

Answer 1 1
11 6( , ) ( , )
12 5

kf
m

 
  

 
A   and 2 2

11( , ) ( , )
12

kf
m

 
   

A

x

L
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In bar problem k EA , m A  , and external forces vanish. Equations for the points
{0,1,2,3}i  are 0 0u   and 3 0u 

0 1 2 0 1 2
1( 2 ) (4 4 ) 0
6

EA u u u A x u u u
x

      


    ,

1 2 3 1 2 3
1( 2 ) (4 4 ) 0
6

EA u u u A x u u u
x

      


  

In matrix notation, when the known displacements at the boundary points {0,3}i  are
used to simplify equations of points {1,2}i

1 1

2 2

2 1 4 11 0
1 2 1 46

u uEA A x
u ux


       

               




. 

With the trial solution i te u A ,  the algebraic equations for the angular velocities 
and the corresponding modes A  takes the form
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1

2

2 1 4 1
( ) 0

1 2 1 4
A
A


     

          
  where

2
2

6
x
E

  
 .

The possible values of   are given by

2 22 4 1
det (2 4 ) (1 ) 0

1 2 4
 

 
 

   
        


1
5

    or 1  .

The corresponding modes follow from the linear equations when the values of   are
substituted there one at a time

1
1
5

  : 1 1

2 2

2 1 4 1 1 11 6( ) 0
1 2 1 4 1 15 5

A A
A A

         
                   

 1
1
1
 

  
 

A , 

2 1  : 1 1

2 2

2 1 4 1 1 1
( 1 ) 2 0

1 2 1 4 1 1
A A
A A

          
                    

 2
1
1

 
   

A . 
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EXAMPLE A string of length L , tightening S , cross-sectional area A , and density  ,  is
loaded by a point force P at its center point.  If the ends are fixed and the initial geometry
without loading is straight, find the solution to the transverse displacement as function of x
using the Finite Element Method on a regular grid of three points {0,1,2}i .

Answer 1 4
PLw

S


L

P

x

z
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In the string problem i ia w , k S , 1F P , and / 2x L  . The equations by the Finite
Element Method considers also the possibility of points forces. Therefore

0 1 2( 2 ) 0S w w w P
x

   


, 0 0w  ,  and 2 0w   1 4
PLw

S
 . 
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4.5 TIME INTEGRATION (DG)

In the one-step DG (Discontinuous Galerkin) method, the solution is sought step-by-step in
the same manner as with the CN (Crank-Nicolson) method. Derivation of the method is,
however, based on a polynomial approximation and the weighted residuals for the
differential equations.

As the temporal domain for an initial value problem does not have an upper bound (strictly
speaking). Also, the length of the intervals can be chosen to match the behavior of the
solution (small steps for the rapid changes).

0 1 2
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TIME INTEGRATION

 Method Iteration {1,2, }i          Initial 0i 

EX
1

1

cos sin
sin cosi i

a
t

a
a ta

  
  





    
     

        0

a g
ta th

   
       

CN
2

2 2 2
1

4 4

4
1

4 4i i

a
t

a
a at



   

    
     

   


     0

a g
ta th

   
       

DG
2

1

2

4 2 2

6 3 62
12 6 6 3i it

a
t
a

a a
 

   

 


    
     

         0

a g
ta th

   
       

The methods coincide at the limit of vanishing step-size when 0k t
m

    .
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MATRIX REPRESENTATION

Representing the unknown displacements by column matrix ( )ta , coefficients of ( )ta  by
square mass matrix M ,  coefficients of ( )ta  by square stiffness matrix K , and the external
loading by column matrix F , the second order initial value problems by Particle Surrogate
Method, Finite Difference Method, and the Finite Element Method are given by

  Ka F Ma 0t  a g   and a h 0t  .

The column matrices g   and h   represent the initial positions and velocities of the free
particles. Matrix representation is the concise starting point for

(1) mode analysis for frequencies and modes of free vibrations

(2) displacement solutions based on the frequencies and modes

(3) step-by-step time integration methods on temporal grid of time instants 
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DERIVATION OF THE METHOD

Polynomial approximation 0 1( )t t  a α α   for the typical time-interval 1[ , ]i it t t
where 1i it t t   . The lowest order method is given by a linear approximation

0 1( )t t a α α .

Weighted residual method for the second order ordinary differential equations with the
shape functions 1p   and p t  of the approximation as the weights in

1
1 1( ) [ ( )] [ ( )] 0i

i

t
i it

p dt p p


        Ma Ka F M a h M a g   .

Solving the equations for 0α , 1α  and use of 0 1i t  a α α  and 1i i a a   gives the typical
step of the Discontinuous Galerkin method for a second order initial values problem. The
same recipe applies with more terms.
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According to the recipe for the simplest DG time integration step to get { , }ia a  in terms
of solution to the previous step evaluated at its end point 1{ , } { , }i a a g h

1

2
1 0 1 1

1( ) ( ) ( ) ( ) 0
2

i

i

t
it

dt t t t


            Ka F M a h K α α F M α h ,

1

2 3 2
1 0 1 0

1 1 1( ) ( ) ( ) ( ) 0
2 3 2

i

i

t
it

t dt t t t


            Ka F M a g K α α F M α g .

Rearranging the equations

2
0 1

1( )
2

t t t      Kα K M α Mh F ,

2 3 2
0 1

1 1 1( )
2 3 2

t t t       K M α Kα Mg F

and using the writing the equations in the recursive form of iteration with
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0

10i

t             
         

αa I I

αa I


0

1 0 i

t              
         

α I I a

α I a

gives

2

2
2 3 1

1
02

11 1 0 0
22 3

i i

tt t t

tt t 

                                
                        

K K M I I a M a
F

I a M aK M K
 

and finally

2

2
2 3 1

1
02

11 1 0
22 6

i i

tt t

tt t t 

                            
                      

K K M a M a
F

a M aK M M K
 

.
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ONE-STEP METHODS FOR EQUATION SYSTEM

DG:

2 2

2 2 1

1
2

1 1
2 6

i i

t t

t tt t 

                     
                 
 

K K M a 0 M a

a M 0 aK M M K
 

,
0t t

         
       

a g

a h

CN:
1

1 1
2 2

2 2
i it t t t 

                  
                  

I I I Ia a

a aK M K M
 

,
0t t

         
       

a g

a h

The proper step-size t   depends on the largest eigenvalue of parameter 1 2t M K . The
numerical damping of DG exceeds that of CN whereas the phase error of CN exceeds that
of the DG method.
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EXAMPLE Finite Element Method is applied to the bar problem shown using a regular
grid with {0,1,2,3}i . Thereafter, Discontinuous-Galerkin method is applied to find the
solution at the temporal grid jt j t  {0,1, }j  . Derive the iteration formula giving the
displacements and velocities of points of the spatial discretization for initial displacement
and velocities given by g  and h. Material properties E  and   and cross-sectional area A
are constants.

Answer 1 1

2 2

2 1 4 113 0
1 2 1 43 6

u uEA L A
u uL


       

             



x

L
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Using the Finite Element Method on a regular grid of points {0,1,2,3}i  gives the
equations set: 0 0u   and 3 0u 

0 1 2 0 1 2
1( 2 ) (4 4 ) 0
6

EA u u u A x u u u
x

      


   ,

1 2 3 1 2 3
1( 2 ) (4 4 ) 0
6

EA u u u A x u u u
x

      


   .

Or written in the matrix form by taking into account only the points of unknown
displacements and / 3x L 

1 1

2 2

2 1 4 113 0
1 2 1 43 6

u uEA L A
u uL


       

             


.

With notation
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4 11
1 43 6

L A  
  

 
M ,

2 1
3

1 2
EA
L

 
   

K , 1

2

u
u
 

  
 

a , 1

2

u
u
 

  
 

a





the time-integration according to the Discontinuous-Galerkin method is given by

2 2

2 2 1

1
2

1 1
2 6

i i

t t

t tt t 

                     
                 
 

K K M a 0 M a

a M 0 aK M M K
 

,
0t t

         
       

a g

a h
 .
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4.5 ELEMENTS AND NODES

In Finite Element Method, grid points and the line segments between them are called as the
nodes and elements, respectively. The representation of geometry or dataset by elements
and separate lists of coordinates and function values contains the regular grid representations
used in Particle Surrogate Method and Finite Difference Method as a particular case.

The element-node representation is more flexible than the regular grid and fits particularly
well in the Finite Element Method also with several spatial dimensions.

0 1 2 n1 2 n
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Example of  the representation of dataset  0 0 1 1( , ), ( , ), , ( , )n nx f x f x f  with the element
concept is

 (0,1), (1,2), , ( 1, )n n ,  0 1, , , nx x x ,  0 1, , , nf f f

The element description consist of the indices of the end points and coordinates and
function values are given in separate lists. In implementation of the numerical method,
the numbering of the nodes starts from 1 due to the usual referencing convention to
elements of the lists and tables so the representation of the dataset would likely be

 (1,2),(2,3), ,( , 1)n n ,  0 1, , , nx x x ,  0 1, , , nf f f

or even more likely

 (1,2),(2,3), ,( , 1)n n ,  1 2 1, , , nx x x  ,  1 2 1, , , nf f f  .

In hand calculations, the convention used does not matter.


