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Home assignment 3

A bar is free to move in the horizontal direction as shown. At 0t  , the bar moves with constant
velocity U  to the direction of the x  axis displacements being zeros. Use the Finite Difference
Method on a regular grid with {0,1,2}i  and the Crank-Nicolson method with step size t  to find
the displacements and velocities at t t  . Cross-sectional area A, density   of the material, and
Young’s modulus E  of the material are constants.

Solution
The continuum model for the problem is given by equations
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In the Finite Difference Method, derivatives with respect to the spatial coordinates are replaced by
difference approximations. Assuming the central three-point approximation to the second derivative
and two point backward and forward approximations to the derivatives in the boundary conditions
(difference approximations cannot use points outside the region), the equations for the points

{0,1,2}i  become
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of which the first and the last are algebraic equations and do not require discretization in the temporal
domain. Also, the initial conditions apply only to the points inside the domain, i.e., to point 1 whose
equation is an ordinary second order differential equation in time. The algebraic equations can be
used to eliminate 2u  and 0u  from the differential equation to get the initial value problem
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having the exact solution 1( )u t Ut   and using the algebraic equations of the boundary conditions

0 2 1( ) ( ) ( )u t u t u t Ut    . Let us apply the Crank-Nicolson method to see how well it predicts the
displacements:
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With the present problem 1a u  and / 0k m t     so the iteration simplifies to
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which gives after one step
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The displacements and velocities of the boundary points follow from the two algebraic equations
given by the boundary conditions in the same manner as with the exact solution with respect to time:
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In this particular case, the outcome by the numerical time integration method coincides with the exact
solution.


