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ABSTRACT
The Unified Model of Saliency and Importance (UMSI) can pre-
dict human attention on both natural images and graphic designs.
The performance of UMSI model is comparable to state-of-the-art
models for natural image saliency and it outperforms the existing
visual importance models. The pre-trained UMSI model and the
inference code are available online. However, the training code of
UMSI model is missing. To verify the details in the original UMSI
paper, in this work we reproduce the UMSI model and run the same
evaluation as in the original paper. The evaluation results show our
reproduced model rivals the official UMSI model.
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1 INTRODUCTION
In graphic design, visual importance refers to the level of design
elements grabbing the viewer’s attention. A crucial task for de-
signers is to make the information that they want to convey have
relative higher visual importance. Therefore, a model which can
predict visual importance of graphic designs can be a useful tool
for designers. The model can guide designers to adjust the design
elements or even re-targeting the layout of the design elements for
designers.

The state-of-the-art visual saliency model trained with natural
images does not have good generalization ability in visual impor-
tance prediction of graphic designs [8]. The previous visual im-
portance model for graphic designs performs poorly in saliency
prediction[14]. This model is trained on the dataset with limited
types of graphic designs. However, in real world applications, there
aremany graphic design classes (e.g. advertisements, movie posters).
The contents of design, such as layout and design elements, are
different in different design classes. Thus, designers need a special
model which can predict visual importance for all kinds of designs.
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Figure 1: Visual importance and saliency predictions of our
reproduced UMSI model. "gt" refers to the ground truth
heatmape
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To solve this problem, Fosco et al. proposed [9] the UMSI model.
The UMSI model has ability to predict the visual saliency of nat-
ural images and different kinds of design in real-time, including
infographics, posters, mobile UIs, advertisements and Webpages.
The model has shown promising results in terms of efficiency and
its generalization ability towards different design classes. How-
ever, the training code is not available online. To verify the details
of the training process in their paper. In this work, reproduced
the UMSI model for predicting visual importance. The evaluation
results show that the reproduced UMSI model is comparable to
the official UMSI model in different tasks. In graphic design clas-
sification, our reproduced model performs better than the official
model.

The remainder of the paper is organized as follows. Section
2 presents the related works, while Section 3 introduces UMSI
model and training details in reproducing. Section 4 demonstrates
the evaluation results of our reproduced UMSI model in different
tasks. Section 5 discusses the failure cases of reproduced model
and proposes possible directions for future works. Finally, Section
6 draws the conclusion.

2 RELATEDWORK
Most prior works estimate visual saliency by measuring eye track-
ing [12]. However, implement eye tracking for each design to get
accurate prediction is time consuming and not helpful in real-time
interactive design.

With the help of deep learning,many computer vision researchers
have studied visual saliency [7, 10]. These methods have produced
high performance on existing saliency datasets with natural im-
ages[4, 1, 11, 5, 2]. However, these models which are trained on
purely nature images cannot directly be used on graphic designs.
Bylinskii et al. [3] first introduced predictors to both graphic de-
signs and data visualizations based on neural networks. Fosco et al.
[9] followed up with the first visual importance prediction model
which performed well across different types of designs and natural
image and proposed manually labeled dataset Imp1K including 5
classes of designs. The architecture of their model modification of
a strong semantic segmentation model DeepLabv3+ [6]. The model
first trained on SALCON dataset which consists of natural images,
then fine-tuned on Imp1K dataset. In their experimental result, the
UMSI model trained by this training procedure demonstrates strong
generalization ability. However, the code of training procedure is
unavailable. To reproduce this training procedure, in this work we
follow the details described in their work reproducing the UMSI
model.

3 UNIFIED MODEL OF SALIENCY AND
IMPORTANCE

3.1 Model Architecture
Unified Model of Saliency and Importance (UMSI) [9] is the state-of-
the-art model in predicting visual importance across graphic design
types. The architecture of UMSI model is presented in Figure 2..
Given an image as input, the outputs of UMSI are the heatmap repre-
senting the importance value of every pixel and the predicted label
of the type of the input. Similar to other visual saliency predictors,

Figure 2: The model architecture of UMSI [9].

UMSI model is designed based on encoder-decoder architecture. In
addition, UMSI model has a classification submodule.

The Xception-based encoder is comprised of depthwise separa-
ble convolutions in order to extract feature maps of input images.
The following Atrous Separable Pyramid Pooling (ASPP) layer ag-
gregates the multi-scale information of the image. The output of
the encoder is also used for classification. The classification module
is parallel with ASPP. In the classification module, the input feature
map is processed by convolutional layers and then flatten to a 1d
tensor. This tensor produces the class probabilities after Softmax.
In addition, this tensor is resized and then concatenated with the
output of ASPP. By concatenating with the classification informa-
tion, the model can learn the general heatmap trend of different
design classes. This concatenated tensor is passed to the decoder.
The decoder is a set of convolutions for up-sampling the input
tensor to the original image size.

3.2 Loss Function
Several evaluation metrics have been proposed for visual saliency
and visual importance tasks. In order to get a better evaluation,
in saliency and importance models, the loss functions are usually
a combination between different metrics. In reproducing, we use
the same loss function as in [9]. Kullback-Leibler divergence (KL)
and Pearson’s Correlation Coefficient (CC) losses are used in visual
importance prediction. In addition, binary cross-entropy loss is used
for classification module. The loss function is defined as follows:

𝑙𝑜𝑠𝑠 (𝑝_𝑚𝑎𝑝,𝑔𝑡_𝑚𝑎𝑝, 𝑝_𝑙𝑎𝑏𝑒𝑙, 𝑔𝑡_𝑙𝑎𝑏𝑒𝑙) =
𝛼𝐾𝐿(𝑝_𝑚𝑎𝑝,𝑔𝑡_𝑚𝑎𝑝)

+𝛽𝐶𝐶 (𝑝_𝑚𝑎𝑝,𝑔𝑡_𝑚𝑎𝑝)
+𝛾𝐵𝑖𝑛𝑎𝑟𝑦𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝_𝑙𝑎𝑏𝑒𝑙, 𝑔𝑡_𝑙𝑎𝑏𝑒𝑙))

(1)

where 𝑝_𝑚𝑎𝑝 , 𝑔𝑡_𝑚𝑎𝑝 , 𝑝_𝑙𝑎𝑏𝑒𝑙 and 𝑔𝑡_𝑙𝑎𝑏𝑒𝑙 refer to the prediction
importance heatmap, the ground truth importance heatmap, the
prediction label and the ground truth label respectively. 𝛼 , 𝛽 and 𝛾
are coefficients which balance the three loss functions.

The KL divergence loss measures the distance between the dis-
tribution of the prediction map and the distribution of ground truth
map. The lower KL score refers to the better model performance.

The CC loss measures the correlation between the prediction
map and the ground truth map. The CC score is close to 1 for the
good prediction map.
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3.3 Datasets
For training and testing our model, the same as [9], we use three
popular datasets in training. Visual importance datasets Imp1k [9]
and GDI [14], and visual saliency dataset SALICON [10].

• SALICON: SALICON is the largest visual saliceny dataset
which consists of 10000 training images, 5000 validation
images, and 5000 test images. These images are all natural
images selected from COCO dataset [13]. The training set
and validation set have corresponding ground truth saliency
heatmap and fixation information. The ground truth for the
test set is not available. The predictions are evaluated on
SALICON website.

• Imp1k: Imp1k is a visual importance dataset. The dataset
contains 1000 images of 5 different types of graphic designs
(advertisements, infographics, movie posters, mobile UIs and
webpages). There are 800 training images and 200 validation
images.

• GDI: Similar to Imp1k, GDI is a visual importance dataset
for graphic designs as well. Different from Imp1k, all 1078
images in GDI are mostly advertisements and posters.

3.4 Model Training
In reproducing, we follow the training procedure and training de-
tails in the original paper [9]. To make the model have a good
performance on both natural images and graphic designs, we use
SALICON with no fixation information and Imp1k in training.

3.4.1 Training Details. In the beginning, the model is trained on
SALICON training dataset for 10-15 epochs. After this, the model
has a good ability on predicting the visual saliency of natural images.
The model weights after each epoch are saved. The model weights
with the lowest validation loss is selected for fine-tuning on Imp1k.
The training loss is shown in Figure 3.

Figure 3: The training loss on SALICON dataset

In fine-tuning, the model is trained on Imp1k for another 10-15
epochs. In epoch epochs, to keep the model remember the knowl-
edge of natural images, randomly selected 160 images from SALI-
CON training set are added in Imp1k training set. This number of

natural images can maintain the class balance. Figure 4 shows the
loss of fine-tuning. In the whole training procedure, the weight of

Figure 4: The training loss in fine-tuning on Imp1k dataset

KL loss 𝛼 = 10, and the weight of CC loss 𝛽 = −3. For the classifica-
tion loss, the weight is 0 when the model is training on SALICON
dataset. Since sending too many natural images to the classification
module can cause class imbalance. In fine-tuning, the weight 𝛾 = 5
for binary cross-entropy loss. We train the model on RTX 2060
Super GPU, which has limited RAM. Thus, the batch size is 4 in
our reproducing, different from batch size 8 in the official UMSI
model. In addition, we only use two drop out layers with rate 0.3
in our model. The rest of training parameters are the same as [9].
We use Adam optimizer with an initial learning rate of 0.0001. The
learning rate decays 10 times every three epochs.

4 MODEL EVALUATION
In this section, we compare our reproduced UMSI model with the
official UMSI model in different tasks on different dataset.

4.1 Evaluation Metrics
4.1.1 Importance and saliency metrics. Except from KL and CC, we
use coefficient of determination (𝑅2) and Root-Mean-Square Error
(𝑅𝑀𝑆𝐸) evaluating the performance of importance and saliency as
well.

• 𝑅2: 𝑅2 evaluates the goodness-of-fit of the prediction versus
the ground truth. The higher 𝑅2 value indicates the better
performance.

• 𝑅𝑀𝑆𝐸: RMSE measures the deviation between the prediction
and the ground truth. RMSE is always non-negative, and a
value of 0 indicates a perfect fit to the data. The lower RMSE
score refers to the better performance.

4.2 Saliency Evaluation
We first compare our reproduced UMSI model with the official UMSI
model in visual saliency prediction. Due to our computer has limited
computational power, predicting heatmaps of all 5000 images in
SALICON test set and upload for evaluation is impossible. Instead of
using the test set, the reproduced model is evaluated on SALICON

2021-05-19 09:57. Page 3 of 1–6.
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validation set. Table 1. shows the result of comparison. Although

Methods R2 ↑ RMSE ↓ CC ↑ KL ↓ ACC ↑
UMSI[9] 0.635 0.096 0.880 0.196 0.999
UMSI-reproduced(ours) 0.593 0.098 0.851 0.358 0.996

Table 1: Evaluation of visual saliency prediction on SALI-
CON dataset. We compare our reproduced UMSI model with
the official UMSI model on validation set of SALICON.

the official UMSI model outperforms our reproduced model on
saliency prediction. Our reproduced model gets the comparably
result to the official UMSI model.

4.3 Visual Importance Evaluation
In addition to saliency prediction evaluation, we evaluation visual
importance prediction on both GDI and Imp1k dataset.

For GDI dataset, we use the entire dataset for the evaluation.
Table 2. presents the result on GDI dataset. The performance of our
reproduced UMSI model is close to the official UMSI model.

Methods R2 ↑ RMSE ↓ CC ↑ KL ↓
UMSI[9] 0.447 0.192 0.818 0.186
UMSI-reproduced(ours) 0.408 0.204 0.795 0.220

Table 2: Evaluation of visual importance prediction on GDI
dataset. We compare our reproduced UMSI model with the
official UMSI model on the entire GDI dataset. While the of-
ficial UMSImodel outperforms our reproduced UMSImodel
on GDI dataset, our reproduced model also gets competitive
results.

For Imp1k dataset, we use the validation set for the evaluation.
Table 3. shows the evaluation result. Our reproduced UMSI model
rivals the official UMSI model.

Methods R2 ↑ RMSE ↓ CC ↑ KL ↓ ACC ↑
UMSI[9] 0.080 0.141 0.839 0.149 0.935
UMSI-reproduced(ours) 0.117 0.139 0.812 0.192 0.950

Table 3: Evaluation of visual importance prediction on
Imp1k dataset. We compare our reproduced UMSI model
with the official UMSImodel on validation set of Imp1k. The
result shows our reproduced model rivals the official UMSI
model.

4.4 Classification Evaluation
For classification evaluation, we use the validation set of both Imp1k
and SALICON. Imp1k provides 5 types of graphic designs and
SALICON provides natural images.

Table 4. shows the classification accuray per class. The result
of average accuracy of graphic designs and natural images can be
found in Table 1. and Table 3. The official model performs well in
the class of natural images. In graphic design classification, our
model gets 95% average accuracy which is slightly better than the
official model 93%.

5 DISCUSSION
In this section, we analyze the possible reasons behind the slightly
worse performance of our reproduced UMSI model. In additionm
we discuss the common failure cases predicted by our reproduced
UMSI model and the official UMSI model.

5.1 The Possible Reasons Behind the Slightly
Worse Performance

In general, the performance of our reproduced UMSI model is sim-
ilar to the official UMSI model. However, our reproduced model
performs slightly worse. There are some possible reasons for this.

(1) Batch size: The max batch size can be used in our computer
is 4. The model may be stuck in the local optimum when
using a small batch size in training.

(2) Over-fitting: Since the detail of dropout setting in the official
UMSI model is unclear. In reproducing, we only use two
dropout layers. Trying different setting to avoid over-fitting
may improve the performance of our model.

5.2 Failure Cases
Figure 5. shows the examples which only fail in visual importance
prediction. Figure 6. presents the failure case in classification only.
While, Figure 7. demonstrates the examples which fail in both visual
importance prediction and classification. The visual importance

Figure 5: Example failure cases in visual importance predic-
tion. "gt" refers to the ground truth heatmap.

prediction is easy to fail, when the design has many design elements
or there are many overlays. In movie poster, infographics, as well as
other types of designs, the title always have relative higher visual
importance value and the title usually has the biggest text size.
For example, the top images in Figure 5. has three zones with text
and the text in these zones are in almost the same size. Our model
confuses the text boxes with the real title in this case.

Visual saliency and visual importance are incompatible in some
parts. Visual saliency datasets are collected by eye-tracking, the
large elements or attractive elements in images have the highest
visual saliency score. However, in visual importance datasets, the

2021-05-19 09:57. Page 4 of 1–6.
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Methods Advertisements Infograhics Mobile UIs Movie Posters Webpages Natural Images
UMSI[9] 0.96 0.99 0.995 0.995 0.995 0.999
UMSI-reproduced (ours) 0.97 0.995 0.995 0.995 0.995 0.996

Table 4: Evaluation result of classification on Imp1k and SALICON dataset. We compare our reproduced UMSI model with the
official UMSI model on the validation set of Imp1k and the validation set of SALICON.

Figure 6: Example failure case in classification. "gt" refers to
the ground truth heatmap.

highest importance value usually assigns to the title or text. UMSI
model has knowledge in both saliency and importance. Since SAL-
ICON dataset has more images than imp1k, the model learned
more knowledge of saliency. For instance, in the first and the third
examples in Figure 7., our model gives the highest visual impor-
tance value to those design elements which supposed to have a
relative higher saliency value, instead of the title. Balancing the
saliency knowledge and the importance knowledge in training is a
worthwhile direction in the future work.

6 CONCLUSION
In this work, reproduced the state-of-the art visual importance
model - UMSI. We compare the reproduced UMSI model with the
official UMSI model, the results show that our reproduced model
rivals the official model. Moreover, we analysis the common failure
cases in UMSI model and propose suggestions to the future works.
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