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Figure 1: Four randomly chosen exampleUIs containing touch interaction prediction as purple dot and actual touch interaction
in green. From left to right the screenshots have Rico ids 5956, 39293, 7627 and 41937.

ABSTRACT
An interaction decision prediction can be generated from a model
trained to learn factors affecting user decisions to interact with
an interface. The predictive models can be trained for various in-
terfaces where interactions using various hand gestures such as
swipes, taps and clicks may be performed. The decision to perform
an interaction with the interface can be affected by factors related to
human decision making process such as factors affecting attention
like saliency and expectation of a reward. Data-driven models have
been developed to predict component based mobile user interface
saliency and click-sequence predictions. With components we refer
to items visible on the screen such as buttons and menu boxes.
However, the overall process of first interaction decision prediction
especially in touch interaction settings for mobile interfaces has not
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been studied. A deep convolutional neural network model trained
to minimize euclidean distance between a known touch point on
the screen and the prediction converges towards the correct touch
area highlighting the effect of attention and interface structure
on human decision making process. This work expands on the
possible study area of decision making factors like attention on
mobile interfaces as previously saliency models have been trained
to study attention on mobile interfaces. The results help form a link
between the human decision making process and mobile interfaces.
The work provides a starting point for studying decision making
factors on mobile interfaces from both bottom-up and top-down
perspectives. Additionally the work contributes towards improving
user experience and enhancing application business performance.
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1 INTRODUCTION
When a human is starting to interact with a computer, interface
or software it is not immediately clear how the human is going
to choose to interact with it. This is especially unclear during the
first interaction decision when previous interaction data may not
be available, or the user may not be known yet. We define the
first interaction decision as the outcome of when a human has
made the decision to interact with an interface and performed
the intended interaction such as a tap or a swipe. What affects
possible modes of interaction are the available types of pointing
devices and interfaces such as a touchscreen on a mobile device.
On a touchscreen it is possible to perform various hand gestures
such as taps, pinches and swipes [4, 21] to interact with a selected
component visible on the interface. With components we refer to
areas on the interface that contain multiple elements such as a pop-
up window or a slider [1]. Components form another constraint
on possible human interaction choices as interacting with a button
for example is primarily done via taps and similar gestures on a
touchscreen. Using data collected from possible interaction choices
on interfaces it is possible to predict where the user will perform
their next interaction or where they choose to point gaze as they
direct visual attention on the screen [6, 8, 9, 11, 12, 15, 21].

During human interaction with interfaces such as mobile ap-
plications it is helpful to know how the user will experience the
interface, what they find interesting about it or how it links to their
goals. How a user directs attention through selectivity in perception
[13] links to how the interface is experienced and what goals they
have in mind. The targeting process of visual attention is controlled
by directing the eyes to make a particular scene in the environment
visible with fovea of the retina displaying a high-resolution central
area for detailed processing. When considering attention it affects
how humans consider making choices during the decision making
process [13]. As visual attention is directed through pointing eyes to
display a particular area on an interface, investigating linkages be-
tween first interaction decision, interface structure, visual attention
process and decision making is possible. Orquin et al. performed a
review of studies investigating eye movements in decision making.
The identified categories for attention included stimulus-driven at-
tention, saliency, goal-oriented attention and lastly an intersection
between working memory and attention [13].

Attention has been studied for mobile interfaces from the per-
spectives of visual saliency [6, 11] and touch saliency [12, 21].
Saliency characterizes parts of a scene that stand out relative to
the surrounding area [2, 13]. Xu et al. [21] had introduced touch
saliency as an alternative to visual saliency for natural images with
a follow-up by [12] proposing a model using both touch saliency
and visual saliency to improve saliency prediction performance.
Gupta et al. demonstrated that specifically training a deep learning
autoencoder for predicting saliency on mobile user interfaces per-
forms better than models trained on natural images [6]. Leiva et al.

demonstrated that data-driven models to perform better than clas-
sic parameter-free saliency models on an annotated mobile UI data
set of 193 mobile UIs. In addition, the results highlight the role of
expectations when users choose where to look especially towards
the top left corner. [11] It has been shown for mobile UIs that plac-
ing task targets in high saliency areas on mobile UIs can improve
task completion times [19]. Lastly interaction choices on mobile
interfaces have been studied based on historical usage data and
recent choice sequences to gain insight into what the user might
do next so a marketing intervention may be performed [8, 15]. Pre-
vious works have not studied the linkage between what actually
led to the decision to physically interact with a particular area of
an interface. Additionally, to the best of the authors’ knowledge no
attempt has been made at trying to predict the outcome of the first
interaction decision and what affected the decision.

We propose a deep convolutional neural network (CNN) model
to predict the first interaction decision for mobile UIs based on
touch data containing taps and swipes. The touch data has been
obtained from Rico dataset [4] while the UIS are from Enrico [10]
which is a collection of curated Rico interfaces. The CNN model
input data is essentially the same as the data Leiva et al. [10] used
for classifying interfaces into 20 UI design topics. However, the
prediction generated by our model is markedly different as we
are predicting two-dimensional Euclidean distances measured in
pixels on the interfaces. The Euclidean distance is measured as
the difference between the actual tap or first point of swipe and
the predicted point of first interaction. Consequentially, our model
is a regression problem rather than a classification problem. The
predicted touch point and actual touch point are also classified into
components on the UI in order to study if the actual and predicted
touch points are within the same component.

This work shows that it is possible to predict interaction deci-
sions on mobile interfaces in the form of touches as the regression
problem learned by the CNN model converges towards the actual
touch points. Additionally, the model had a better classification
performance than randomly guessing a component on the interface.
This work opens up possibilities to study and understand human
interaction choices on interfaces. Understanding human choices to
interact with interfaces contributes to possibilities for improving
user experience and enhancing the business performance of various
interfaces. From research perspective we now know that it should
be possible to form a linkage between human interaction decisions,
attention and the final interaction outcomes.

2 RELATEDWORK
2.1 Rico Dataset
Rico is a dataset comprising of over 72,000 mobile UI screenshots
and related touch interaction traces. The screenshots comprise ap-
proximately 9,700 mobile applications available from Android store.
The interaction traces can be subdivided into touch interaction and
swipe interaction traces. Both types of interaction traces measure
the first interaction and then cut off. Rico also contains view hi-
erarchies and Android app store metadata for example. The data
has been obtained through both human exploration and automated
exploration. The work also included training a deep autoencoder to
learn a 64 dimensional representation of each UI layout. [4] Given
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the large amount of interaction traces and UI layouts the data can
be used to study user interaction behaviors and predicting UI topics
based on annotations for example.

2.2 Enrico, Rico and Modeling the Data
Leiva, Hota and Oulasvirta [10] investigated topic modeling based
on Rico dataset and formed enhanced Rico (Enrico) dataset. The
dataset is generated from investigating 10k UIs selected randomly
resulting to a 1460 high quality UI dataset comprising 20 design top-
ics such as settings, login and gallery. The originally selected 10k UIs
were revised and bad examples discarded using a web-based inter-
face displaying a screenshot of the UI side-by-side with a semantic
wireframe. The screenshots were also annotated using an annota-
tion interface with topic categories available for the screenshots.
As a demonstration of the dataset applications a deep convolutional
autoencoder was trained to perform topic classification. The best
classification accuracy was achieved with UI screenshots as op-
posed to wireframes and embeddings. [10] In the work an open
question was discovered regarding the best algorithm to discover
the latent space for Enrico in 2D. When UMAP algorithm was used
the categories in the latent space were quite mixed up.

2.3 Touch Saliency and Finger Touch Data
Xu et al. [21] followed up and expanded by Ni et al. [12] developed
and researched the concept of touch saliency for mobile interfaces.
The data set was formed from NUSEF dataset containing natural
images. The data comprised two parts where eye-tracking data was
collected and additionally finger touch data for zooming in on parts
of the images was collected. From the data both touch saliency maps
and visual saliency maps were obtained. Xu et al. tested algorithms
such as IT, AIM and ICL with AUC and CC metrics for evaluative
capability on both visual saliency and touch saliency. The saliences
were found to have comparable evaluative capabilities but touch
saliency was more sensitive to object shape. Ni et al. tested multiple
saliency prediction models on the data such as context-aware based
saliency detection (CSD) and multi-task sparsity pursuit (MTSP).
The metrics used included ROC, AUC and CC. In particular MTSP
and MTSP-Mid were found to performed well and especially on
touch ground truth.

2.4 Decision Making and Attention
Attention and decision making are affected by saliency, value and
reward. In particular value is increased positively or negatively
through increased magnitude and probability of a reward. Saliency
can be increased by both positive and negative value when consid-
ering learned saliency through association. Additionally saliency
can mean visual saliency which is affected by physical properties
like color. [7]

2.5 Decision Making on Interfaces
Decision making processes on interfaces can be modeled as an
emergent property of partially observable Markov decision pro-
cesses (POMDP). In POMDP approach a problem space is defined
that represents the interaction between an agent and a partially
observable stochastic environment. A POMDP definition by itself is
not sufficient for understanding how a human chooses to interact

Table 1: Screen complexities

Metric all train test

Screens 1338 1168 170
Max 52 52 26
Min 1 1 1
Mean 9.41 9.48 8.96
Std 6.49 5.93 6.57

with for example a side-menu or a full interface. Rather a specific
solution to the POMDP model has to be learned. [14] Addition-
ally Todi et al. demonstrated the application of a reinforcement
learning algorithm with MDP problem space definition for adaptive
side-menus [20]. Interestingly an alternative approach to study the
problem of the paper is to model it from MDP perspective and
apply a reinforcement learning model to the MDP problem space
representation.

3 DATA ANALYSIS
Analysis of Enrico interface components for understanding model
predictive power compared to random choices. Table 1 contains
measures of screen complexities for the whole dataset, train set
and test set. Max and min values mean the minimum number of
components found for some screen. In particular the mean value
helps understand how well on average the model predicts the cor-
rect component compared to randomly choosing one component
on the screen as the correct one. The number of components on
the screen is defined as the number of first level components which
may have child components within their bounds.

Figure 2 depicts the most complicated screens found on both the
training and test sets by maximum first level components measure.
The dataset contains positive skew with a longer tail to the right as
seen in figure 3. The skew does affect interpreting how much better
the model is at choosing correct component compared to random
guesses as right tail brings up the average first level component
count. Due to the positive skew it is interesting to also ascertain
separately that the model performs better than randomly guessing
for screens with first component counts in the 2 to 6 range for
example.

4 COMPUTATIONAL MODELING APPROACH
We approach the touch decision prediction problem using data-
driven computational modeling.

With mapping from Enrico to Rico touch traces we are able to
select interaction traces that will more likely match to elements on
screen annotations more accurately as Enrico annotation scheme
has already been validated by humans. Additionally the dataset is
large enough to attempt predicting touch decision making with
a deep learning approach. This approach also allows us to test if
touch decisions are more biased towards some of the interactable
interface elements which we call element interaction bias. Element
interaction bias can bemeasured by comparing the ratios of touched
interactable elements to total count of the interactable element. If
there is no bias then it would be expected that interactable elements
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Figure 2: Screenshot id 49581 from training set and screen-
shot id 69867 from test sets with the highest numbers of first
level components

Figure 3: First level component distribution of Enrico
dataset.

are touched with amounts corresponding to their count of the total
interactable element population.

Convolutional neural networks (CNNs) are suitable for learning
from data with an already known grid-like topology such as images
[5] and also demonstrated by [10, 18].

4.1 Model Implementation
We implement a series of simple convolutional networks to study
wherewe can obtain good regression convergence for tap prediction
as the problem is different from other studies in the area as typical
standard is based on classification approach. The input layer will be
kept constant with dimension sizes 360, 640 and 3. For expanding
the CNN architecture we will be expanding the architecture using

Figure 4: Designs of implemented CNN network architec-
tures with convolution and max pooling for dimensionality
reduction. The models are the same but employ a different
number of filters.

approaches presented by [5, 18]. Figure 3 displays CNN architec-
tures to be tested first. As an optimizer we will be using Adam due
to its robustness [5].

A typical layer in a CNN consists of three parts, namely convo-
lution, activation and pooling functions which we discuss briefly
below. Convolution operation applies a linear operation using a ker-
nel with weights over an input grid such as a 2D image. In machine
learning discrete convolution is typically performed without kernel
flipping which is similar to cross-correlation and offers a measure
of similarity when one function, such as the kernel, is moved across
the other function over a distance [16]. Discrete cross-correlation
is defined as

𝑆 (𝑖, 𝑗) = (𝐼 ∗ 𝐾) (𝑖, 𝑗) =
∑
𝑚

∑
𝑛

𝐼 (𝑖 +𝑚, 𝑗 + 𝑛)𝐾 (𝑚,𝑛) (1)

Analysis of Enrico interface components for understanding model
where I is a 2D tensor with dimensions i and j. The kernel K has

dimensions m and n. [5] In addition the convolution operation can
have stride which offers a way to downsample the dimensions by
skipping some of the column and row combinations in the input. A
commonly used activation function is Rectified linear unit (ReLU)
defined as

𝑔(𝑧) =𝑚𝑎𝑥 (0, 𝑧), (2)

where any input values below zero are converted to zero [5].
Pooling is an operation where an output value is obtained from

a rectangular neighborhood. In particular, max pooling is com-
mon in convolutional layers where the maximum value from the
neighborhood is selected [5].

Figure 4 depicts the currently applied network architectures. A
special feature of the architectures is the input being non-square
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which requires down-sampling the y-dimension faster for easier
convergence towards (2,1,1) output shape after dense layer.

• model 1 employs a very sparse model by adding strides,
larger kernel sizes and few filters.

• model 2 is the same as model 1 but employs a larger number
of filters.

• model 3 has a yet larger amount of filters but is otherwise
the same as models 1 and 2.

4.2 Training and testing
We use a 80 percent training to 20 percent test split with random
selection. Between the reported model results the training and test
data is kept the same for better comparability. As we are predicting
human touch choice, in particular taps on discrete space bounded
screen elements we want to loss optimize based on a normalized
distance metric. The norm

𝐿1 = | |𝑥 | |1 =
∑
𝑖

|𝑥𝑖 | (3)

is commonly used in machine learning to help distinguish values
close to zero. However, as our purpose is to ensure fitting predicted
tap points inside correct components, weighting predictions most
likely outside the correct component is desirable. As a consequence
our optimization metric will be the norm

𝐿2 = | |𝑥 | |2 =
√∑

𝑖

|𝑥𝑖 |2 (4)

as the norm increases slowly near the ground-truth tap point. [5]
The final loss function is

𝐿(𝑦,𝑦) =
√∑

𝑖

|𝑦𝑖 − 𝑦𝑖 |2, (5)

where 𝑦 is the predicted point and y is the actual point.

4.3 Evaluation metrics
In order to evaluate if the predicted coordinates were within the
right elements the true tap coordinates are mapped to element
bounds extracted from view hierarchy. The predicted taps are binary
classified according to the classification function

𝐶 (𝑥1, 𝑥2, 𝑋,𝑌 ) = (6)
𝑋𝑚𝑖𝑛 <= 𝑥 <= 𝑋𝑚𝑎𝑥 ∩ 𝑌𝑚𝑖𝑛 <= 𝑥2 <= 𝑌𝑚𝑎𝑥 ,𝐶 ∈ {0, 1}, (7)

where Y and X contain minimum and maximum boundaries for an
UI element. 𝑥𝑖 are the predicted touch coordinates. In equation 6.
0 indicates false positive so the element is wrong and 1 indicating
true positive so the tap exists within the desired element. From here
we obtain precision metric

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , (8)

where TP is number of true positives, and FP is number of false
positives [17].

Additionally, we are interested in understanding how close the
predicted taps go to the actual taps in, we are also employing mean

squared error [5] modified for a two-dimensional grid

𝑀𝑆𝐸 =
1
𝑚

∑
𝑚

𝐿( ˆ𝑦𝑚, 𝑦𝑚)2, (9)

where ˆ𝑦𝑚 is the predicted value, 𝑦𝑚 is the actual value and m is the
number of predictions. We may additionally consider estimating
separate errors for x and y dimensions to understand if one dimen-
sion is overrepresented which may for example highlight issues
with model implementation.

5 RESULTS
We were able to identify a clickable component ratio of 0.34 for the
correct component. This could be either due to current component
selection algorithm design or due to inconsistencies with the way a
touchable element is classified in Rico and Enrico datasets. Table 2
depicts prediction accuracy for finding the correct touch component
for the rudimentary model. Figure 5 shows two randomly chosen
interaction predictions.

Table 2: Prediction results by model

Model Accuracy Loss

Model 1 0.268 0.0796
Model 2 0.299 0.670
Model 3 0.268 0.012

Based on the initial results from first three models and some
additional ones that were tried ad-hoc it seems like developing the
model further will require an alternative approach than adding
more filters. From algorithmic perspective developing a model with
one to several more deep layers and going up to 512 filters as in
model 3 could yield a better prediction. Model 3 had the best loss
which did not result to more classification accuracy which could be
an issue with the depth compared to filter count. The convergence
for the loss measure indicates that the models have the ability to
learn where the touch might occur and it can be expected that it
is possible to obtain a better convergence without overfitting. In
particular it seems like model 3 overfitted on the training data as the
better loss measure did not lead to a better accuracy for prediction.

For classification performance from pure probabilistic perspec-
tive the model performs with similar accuracy to random guessing
for interfaces with 3 first-level UI componenents and worse for
those with less than 3 components. However, we expect that in
reality the models perform well for first component counts in the
range of 1 to 7 and worse for larger first-level component counts
at the right-end skew of figure 3 distribution. This needs to be
verified during future work which will be discussed below. Figure 6
depicts an example of an UI with 10 first-level components where
we suspect the predictive power may be worse.

6 DISCUSSION
This work presented the first study on decision making for first
touches on mobile interfaces using data-driven modeling with deep
convolutional networks. What the results have shown is that hu-
man choice to make an interaction decision on a mobile interface



ELEC-E7861 ’21, June 03–05, 2021, Espoo, Finland Nieminen

Figure 5: Two randomly chosen predictions with purple in-
dicating prediction spot and green indicating actual touch
point. The Rico ids for the screenshots are 9293 and 7627.

Figure 6: Screenshot id 514 as an example of an interface
with a more complicated component structure.

can be partially explained by the visual composition of the inter-
face . When we consider the number of touchable items on the
screenshots, then the models might have already captured a funda-
mental section or sections of human decision making process. This

work also contributes a new perspective to study interfaces and
interaction from HCI perspective as most comparable work with
CNN models has focused on classification problems rather than
regression problems.

6.1 Limitations and Future Work
The most pressing issue with the model accuracies can be inferred
from observing figure 5 prediction results. What we see is that the
predictions made by model 2 fell outside where the wireframe boxes
would be for the correct clicks. Furthermore, it can be noted that
the predictions were converging towards the correct location from
Euclidean distance perspective. This means that the model did not
learn to infer wireframe-like shapes and assign weights to them in a
manner that would emphasize placing the prediction points within
the boundaries of the inferred wireframes. This indicates that the
convolution kernel sizes should be optimized to obtain a better
predictive capability. Especially the convolution filters from figure
4 with kernel sizes of 12 might be problematic. An competitive
alternative to changing the kernel sizes could be changing the
input to contain both screenshots and wireframes at the same time.
This requires very little work and does not change complexity
considerably as Enrico and Rico already contain the wireframes
[4, 10] This automatically ensures that the wireframe structures
will be present. This seems sensible especially when we consider
the right screenshot in figure 5 where the CNN learning edges
approximating the wireframe may be challenging.

The classification and regression accuracy could also be im-
proved by using a well-known CNN approach such as VGG [18] and
replacing the VGG classifier with an optimizer for mean squared
error instead. Another factor that was missing from the models
that could have had a positive effect on predictive performance
is using dropout [5] which helps prevent overfitting. In particular
overfitting was observed with model 3 results. An interesting al-
ternative approach to the work includes applying a reinforcement
learning algorithm to learn a solution to the problem space repre-
sented by a POMDP where [3], [20] and [14] may offer a promising
starting point. As saliency is a known factor affecting decision
making process [7] a data-driven approach could be to generate
visual saliency maps from eye-tracking data or predictions with an
existing algorithm and study how saliency and eye-tracking results
affect predictive performance. As an example the model generated
by Leiva et al. [11] could be applied.

When it comes to studying the linkage between decision making,
attention and final interaction result we are currently limited by
the available datasets although the interaction choices measured in
Rico already function as a proxy for the end result of the decision
choice. This does not however account for what happens during the
time when a human is observing the interface and and considering
which interaction choice to make and rather measures only the
abstracted end result of that process. Factors identified by Orguin et
al. [13] such as goals for example are not well visible from current
research. With the current data and model there is however a good
basis for studying how interface structure affects the interaction
decisions and if biases identified by Leiva et al. [11] can be linked
to the interaction results.
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7 CONCLUSION
In this work we have shown that it is possible to predict first in-
teraction decisions made by humans when they are using mobile
applications. Secondly, we have demonstrated a methodology for
studying HCI problems with deep convolutional neural networks
applied to regression problems as studying classification problems
has been a more common theme. We also suspect that other prob-
lems and themes in HCI that can be studied with machine learning
could be approached as CNN regression problems to obtain new
perspectives. Generally speaking any problem where a human must
perform an operation over some distance could be similarly studied
as a regression problem that is still convertible to a classification
type result as well. Additionally, it is interesting to consider how
interactions with an interface such as a mobile UI will link to neural
activity when a person is considering which decision to make as
they direct attention to the interface.
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