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Difference equations

Difference equations are perhaps the simplest example of dynamical sys-
tems. In a dynamical system the state of the system at point n in time, xt,
and a system equation can be used to extrapolate the entire future for the
system, i.e. the values of the state xt+k for all k ∈ N. We will discuss the
cases where xt ∈ R as well as the case where xt ∈ Rn. Except for some
motivating examples, we shall deal with linear systems where the system
equation takes the form

xt+1 = Axt

for some n× n matrix A.

Motivating examples

Fibonacci sequence

Let’s start with some examples. The most famous difference equation is
the one giving rise to the Fibonacci sequence. We set x0 = 0, x1 = 1 and
for all t > 2,

xt = xt−1 + xt−2.

You can compute by repeatedly substituting previous values the sequence
0, 1, 1, 2, 3, 5, 8, 13, ... In some sense, the system equation is already a solu-
tion to the problem. Nevertheless it is not easy to see what x200 is or even
to know its approximate size. By a solution to a difference equation, we
mean here a formula that depends on the initial values x0 and t so that
xt = g(x0, t) for some function g. In fact, we can look at the problem as
one where the function g is the unknown to be solved. We will see how to
compute the values for xt in the Fibonacci sequence.
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Compartmental models of infectious diseases

The most widely used models for the spread of infectious diseases in a
population is the SIR-model, where the population at each point in time
t is partitioned into susceptible (St), infected (It) and recovered (Rt). The
susceptible become infected if they are in contact with infected with some
probability β. The infected recover (or die) at rate γ.

This gives rise to a three-variable system:

St+1 = St − βStIt,
It+1 = It + βStIt − γIt,
Rt+1 = Rt + γIt.

This system does not have an explicit solution for the variables as a
function of time. It is almost linear, but the number of infections depends
on the meetings between susceptible and infected and therefore involves
the product of these two variables. Nevertheless, the system is simple
enough to simulate for various values of β, γ and many of the scenarios
offered by THL for the COVID -pandemic have in fact just been extrapo-
lations of this model for different parameter values.

The most important determinant of the spread of the disease is the epi-
demiological threshold r = βSt

γ
. This measures the average number of

new infections spread by an infected agent before recovery. If this number
falls below 1, then the spread of the disease stops. At the start, the disease
spreads (assuming that β > γ), but as a larger fraction of the suscepti-
ble population becomes infected and recovered, herd immunity is reached
and the spread stops.

Solow growth model

The Solow growth model is perhaps the most important motivating exam-
ple from economics. In this model, labor is kept fixed at L over time and
capital Kt changes over time as a result of savings. The aggregate produc-
tion function is yt = F (Kt, Lt) and it is usually assumed to be an increasing
concave, linearly homogenous (constant returns to scale) so that

F (Kt, Lt) = LtF

(
Kt

Lt
, 1

)
:= Ltf(kt),
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where kt := Kt
Lt

is the pe capita capital stock. It is often assumed that
limk→0 = ∞ and limk→∞ = 0. Let’s assume here that yt = kαt for some
0 < α < 1.

The output yt is divided between savings and consumption. The as-
sumption is that a constant fraction syt is saved. As you can recall from
Principles of Economics II, savings equals investment and investment goes
into next period’s capital. Capital depreciates at rate δ per period. Taking
all this together, we get

kt+1 = skαt + (1− δ)kt.

Let’s draw the graph of skαt − δkt in the (kt, kt+1) plane with the 45-
degree line. Of special interest is the point k∗ such that s(k∗)α − δk∗ = k∗.
If you start the system with k0 = k∗, the system stays there forever since
k1 = skα0 − δk0 = k0 and therefore also kt + n = k0 for all n. We call k∗ the
steady state or a rest point of the system.

kt+1 = kt

kt+1 = sf(kt) + (1− δ)kt
(0, 0) kt

kt+1

k∗

k∗

We can picture the movement of the system by positing an initial point
k0 on the horizontal axis. If k0 < k∗, then k1 = f(k0) > k0. You can locate
the k1 on the horizontal axis by reflecting on the 45-degree line. Repeating
this process, you can show that from any initial point, kt converges to k∗

as t→∞. We say that k∗ is a globally stable steady state.
You may want to note that

k∗ = (
s

1 + δ
)

1
1−α .

The steady state capital level is determined by the savings rate s for a fixed
technology (fixed α and δ). Hence countries that save more grow more.
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You will see more sophisticated versions of the model in your intermediate
macroeconomics course.

Markov process

A population consists of three income classes i ∈ {1, 2, 3}. If you are in
class i, your children are in income class j with probability pji. Let P be
the matrix with a typical element pij .

Let x0 = ei if you are in class i. Then the probability that you child is
in class j is given by the column vector

x1 = Px0 = Pei.

But then the probability that your grandchild is in class j is given by the
column vector

x2 = Px1 = P 2x0,

and in general,

xt+1 = Pxt.

This is a linear difference equation system with constant coefficients
and we will see how to solve such systems. The interesting questions
here include: How does the probability distribution of your sixth succes-
sor generation depend on your income class? In other words, how much
social mobility is there in the society.

Linear difference equations with constant coefficients

The simplest form of difference equations are linear difference equations
with constant coefficients. These can be written as:

xt+1 = Axt + bt,

where bt is a given sequence. If bt = 0 for all t, we have a homogenous
equation. We start with the simplest homogenous equations where xn ∈ R
and A = a ∈ R.

Solving the homogenous equation is very easy. If xt+1 = axt for all
t, then xt+k = akxt. Hence any sequence of the form xt = cat solves the
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difference equation. If we are given the initial value x0, the solution is
xt = x0a

t. In other words, the initial value pins down the coefficient c of
the general solution.

Consider next an inhomogenous equation,

xt+1 = axt + b,

where bt = b for all t. Clearly the constant solution xt = b
1−a for all t solves

the equation. I claim that also xt = cat + b
1−a solves the equation. But this

follows immediately from the fact that cat+1 = acat.
This principle holds more generally. If you have a particular solution

xPt to the inhomogenous equation and the general solution of the homoge-
nous equation xHt , then the general solution to the problem is xPt +xHt . This
is called the principle of superposition and it arises from the linearity of
the equations in xt+1, xt. It is valid also for the case with xt ∈ Rn.

Consider next linear systems with constant coefficients. Let xt ∈ Rn for
all t and let A be an n × n matrix of real numbers. A linear homogenous
system is then given by:

xt+1 = Axt.

As before, we can ’solve’ this by repeated substitution to get

xt+k = Akxt.

Hence I could write the general solution as xt = Atc for some vector c =
(c1, ..., ck). I do not consider this a real solution since it is almost impossible
to see what At is except in some very special cases.

If A is a diagonal matrix with diagonal elements a1, ..., an, then the
solution becomes

xi,t = cati for i ∈ {1, ..., n}.

Here we have essentially independent variables and the difference equa-
tion for each can be solved separately.

Eigenvalues and eigenvectors

To deal with the general case, we want to change the basis in Rn so that
A is diagonal in that basis. This involves the eigenvectors and eigenval-
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ues of A. You can visualize the effect of matrix multiplication on vectors
as consisting of two operations: a rotation and a stretching or shrinking.
Eigenvectors of A are those vectors that are not rotated, i.e. if x 6= 0 is an
eigenvector of A, then for some λ ∈ R,

Ax = λx.

We may write this more compactly as

(A− λI)x = 0,

where I is the n×n identity matrix. But from basic linear algebra, we know
that a homogenous linear equation can have a non-zero solution only if the
matrix does not have full rank, i.e. if det(A− λI) = 0. The values of λ for
which this determinant is zero are called the eigenvalues of A.

The determinant of (A − λI) is called the characteristic polynomial of
A so the eigenvalues are the roots of the characteristic polynomial. If A
has n distinct eigenvalues λ1, ..., λn, then it has also n linearly independent
eigenvectors v1, ...,vn so that

Avi = λivi.

Let’ see an example on how to compute the eigenvalues and vectors.
Let

A =

(
1 1
1 0

)
.

Then

A− λI =

(
1− λ 1

1 −λ

)
,

and
det(A− λI) = λ2 − λ− 1.

We have det(A− λI) = 0 if

λ1 =
1 +
√

5

2
, λ2 =

1−
√

5

2
.

The corresponding eigenvectors are:

v1 = (
1 +
√

5

2
, 1),v2 = (

1−
√

5

2
, 1).
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In the lecture slides, you will see a connection of this example and the
Fibonacci sequence in the motivating examples.

A useful thing to keep in mind about eigenvalues is that the sum of the
eigenvalues equals the trace of the matrix and the product of the eigen-
values equals the determinant of the matrix. This is particularly useful for
inference about the signs of eigenvalues.

Since the characteristic polynomial may fail to have real roots, eigen-
values correspond to the case where the matrix does not have any direc-
tions that are not rotated. To see an easy example of such a matrix, con-
sider the 90-degree rotation anticlockwise:

A =

(
0 −1
1 0

)
.

The characteristic polynomial for this matrix is λ2 + 1 which obviously
does not have real roots. If the eigenvalues are complex numbers, the
eigenvectors are also have complex coordinates. We do not have time in
this course to pursue this, but it should be pointed out that the method
outlined below for solving the difference equations extends also to the case
with complex eigenvalues.

It should not come as a surprise that rotations rotate all vectors. You
may want to pursue the geometric implications for a 3x3 matrix with a
single real eigenvalue and hence a single real eigenvector.

Eigenvectors, eigenvalues and difference equations

I can express any x ∈ Rn given in the usual coordinate system in the coor-
dinate system of spanned by the eigenvectors by simple matrix multiplica-
tion. Let V = [v1 v2 . . .vn] be the matrix formed by the eigenvectors.
Then for any vector y expressed in the coordinate system of the eigenvec-
tors, we can translate it to the standard system by x = V y. Similarly any
x in the standard system is y = V −1x in the system of the eigenvectors.

yt+1 = V −1xt+1 = V −1Axt = V −1AV yt.

Now we want to show that V −1AV = Λ, where Λ is the diagonal
matrix of eigenvalues. But this is the same claim as (premultiply by V ):

AV = V Λ.
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But this follows immediately from the fact that V consists of the eigenvec-
tors of A.

Hence we have: yt = (y1,t, ..., yk,t) = (c1λ
t
1, ..., cnλ

t
n). Since xt = V yt,

we have the general solution:

xt = c1λ
t
1v1 + ...+ cnλ

t
nvn.

Note that Ak = V ΛV −1. Therefore we could have also concluded that

xt = V λkV −1x0.

The two methods give the same results since V c = x0 or c = V −1x0.
Sometimes a matrix has a repeated eigenvalue. Consider for example

A =

(
1 1
0 1

)
.

Then the characteristic equation is (1− λ)2 = 0 and the matrix has a single
eigenvalue λ = 1 and therefore a single eigenvector (1, 0). This matrix can-
not be diagonalized in the procedure that we had above. Luckily enough
all matrices A can be expressed as:

A = Q−1BQ,

where Q is a matrix of generalized eigenvalues and B is upper triangular.
Since the powers of upper triangular matrices are easy to compute, the
same procedure as before can be applied for solving the model. See the
book for the details on this.

Properties of the solutions

For all (homogenous) systems of linear difference equations, 0 is a steady
state. If A has full rank, it is the only steady state. Does the system even-
tually converge to its steady state?

Look at the general solution

xt = c1λ
t
1v1 + ...+ cnλ

t
nvn.

If |λi| < 1 for all i, then xt → 0 for all c. We say that in this case, the
origin is a globally stable steady state or a sink. If |λi| > 1 for all i, then
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the length of xt grows without bound for all c 6= 0. We say that the origin
is unstable or a source. Finally if If |λi| < 1 for some i and If |λi| > 1 for
some i, then the length of xt grows without bound if ci 6= 0 for some iwith
|λi| > 1. If c 6= 0 only for i with |λi| < 1, then xt converges to the origin. In
this last case, we say that origin is a saddle point for the system. If λi = 1
for some i, then origin is neither stable, unstable nor a saddle.

Example: Linear endogenous growth model

Consider the following linear system in two variables. I will explain the
economic content of the model below.

ct+1 = βρct,

kt+1 =
1

1 + n
(ρkt − ct),

or (
ct+1

kt+1

)
=

(
βρ 0
−1
1+n

ρ
1+n

)(
ct
kt

)
,

where ρ = 1− δ + A.
Since the system equation is given by a lower triangular matrix A, we

see immediately that the eigenvalues of A are the diagonal elements βρ
and ρ

1+n
. An eigenvector corresponding to eigenvalue βρ is:

(ρ(1− (1 + n)β), 1),

and an eigenvector for eigenvalue ρ
1+n

is (0, 1).
Hence, we have:

A =

(
βρ 0
−1
1+n

ρ
1+n

)
= V −1ΛV ,

where

Λ =

(
βρ 0
0 ρ

1+n

)
,V =

(
ρ(1− (1 + n)β) 0

1 1

)
.

Exercise: Show that:

V −1 =

(
1

ρ(1−(1+n)β) 0

− 1
ρ(1−(1+n)β) 1

)
.
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We have shown that for initial conditions (c0, k0), the system is solved
by: (

ct
kt

)
=

(
(βρ)tc0

(βρ)tc0
ρ(1−(1+n)β) + ( ρ

1+n
)t
(
k0 − c0

ρ(1−(1+n)β)

) )
.

Optional: Economics of the model

Consumers in an economy decide in each period how much to consume
and how much to save in the form of capital. Additional consumption
of ∆ (small) units in period t brings marginal utility u′(ct)∆. By saving
until t + 1, the consumer will get β(1 − δ + rt)u

′(ct+1)∆, where β is the
discount factor and rt is the interest rate and (1−δ) is the amount of capital
remaining in t + 1 after depreciation δ. At an optimal consumption path,
the consumer cannot gain by reallocating marginal consumptions across
periods. Hence we have the Euler equation:

u′(ct) = β(1− δ + rt)u
′(ct+1).

In a competitive economy, the interest rate is given by the marginal
product of capital. If f(kt) is the production function in the economy mea-
sured in terms of capital per worker kt, then:

rt = f ′(kt).

Finally, capital accumulates according to (similar to the Solow model above):

kt+1 =
1

1 + n
(f(kt) + (1− δ)kt − ct) ,

where n is the growth rate of the working population. If we assume that
u(ct) = ln(ct) and f(kt) = Akt, then we have the linear model that we saw
above.

In more advanced courses in macroeconomics, you would learn that a
reasonable condition on the model parameters is that β(1 + n) < 1. In this
case, you can see by dividing kt by ct that the only choice of c0 such that
consumption ct remains positive and does not vanish relative to kt is that:

c0 = k0(ρ(1− (1 + n)β)).
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Capital stock is normally viewed as a predetermined variable and that ar-
gument above fixes the initial consumption at such a level that consump-
tion remains proportional to the capital stock throughout. Depending on
the parameter values, this system may display sustained economic growth
(if βρ > 1).

Linearizing non-linear systems

For your future information, I note here that if x∗ is a steady state of a
nonlinear system, we can use Taylor’s first order approximation to analyze
the local behavior of the system around the steady state (you’ll do this in
macroeconomics a lot). Here is the idea.

Suppose that xt+1 = f(xt) and x∗ = f(x∗). Then we have

xt+1 = f(xt+1) = f(x∗) +Dxf(x∗)(xt − x∗) or

xt+1 − x∗ = Dxf(x∗)(xt − x∗).

But this is a linear system in the deviations from the steady state and
we can apply the analysis from the linear case in the for small deviations.
You can classify the steady states of nonlinear models locally as we just
did for the linear system (but globally). Just look at the absolute values of
the eigenvalues and compare to 1.

Markov model

Consider the system
xt+1 = Pxt

for a stochastic matrix P , i.e. non-negative matrix whose elements in each
column sum up to 1. You have already shown in Problem set 0 that λ = 1
is an eigenvalue for all Markov matrices.

It can be shown that in the case with strictly positive entries, all other
eigenvalues are less that one in absolute value. Therefore xt converges in
the long run to the eigenvector (whose coordinates are normalized to sum
to 1) corresponding to eigenvalue 1.

The second largest (in length) eigenvalue measures the speed of con-
vergence to this eigenvector.
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Extra: Non-linear systems

General difference equations for xt ∈ R look deceptively simple, but can
give rise to really surprising behavior. One famous example is the logistic
equation on the unit interval: choose 0 < x0 < 1 and compute for t > 1:

xt+1 = rxt(1− xt).
This is a nice differentiable function whose values remain in (0, 1) for all t
as long as r < 4. To analyze a difference equation on the real line, the first
step is to look at the graph of the system equation.

xt+1 = xtxt+1 = 4xt(1− xt)

xt+1 = 0.5xt(1− xt))

(0, 0) 1

1

3
4

xt+1

xt

What is the significance of the intersections of xt+1 = rxt(1 − xt) and
the 45 -degree line xt+1 = xt. The system stops at any such point, because
if xt+1 = xt, then also xt+k = xt by repeated substitution into the system
equation. These are called the steady states of the dynamical system.

Notice that the system has a single steady state at x = 0 if r < 1 (can
you show this?). For 4 > r > 1, the system has another steady state at
x = r−1

r
. What happens to the values of xt as t grows?
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Here is a nice graphical way of seeing what happens to the sequence.
Lets graph the function in a coordinate system where xt+1 is on the vertical
and xt is on the horizontal axis. Draw the graph of xt+1 = f(xt) and pick
a starting point x0 = 0.4 for example on the horizontal axis. You can read
x1 = f(x0) on the graph. You need to picture x1 on the horizontal axis to
see where x2 is located. But you can do this by reflection through the 45
-degree line. The you just continue the procedure.

Lets look first at the case xt+1 = 1
2
xt(1 − xt), i.e. lets take the red curve

in the previous picture.

xt+1 = xt

xt+1 = 0.5xt(1− xt)

0 0.5

0.5

x0 = 0.4

xt+1

xt

x1

x1

0.5

x2

x2

As you can see, for any starting x0, the system xt converges quite quickly
to 0. If we take the blue graph from the first picture, things look quite dif-
ferent. Let’s follow the system again for a few rounds starting at x0 = 0.4.
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xt+1 = xtxt+1 = 4xt(1− xt)

(0, 0) 1

1

xt+1

xt

x1

x1

x3

x2

x2 x0 x3

It is much harder to see where the system might converge and actually
the long run behavior of this simple dynamical system is very compli-
cated. In fact, one can show that the system has cycles of all lengths, i.e.
for all k, you can find x0, x1, ..., xk−1, xk = x0 such that xj + 1 = 4xj(1− xj)
for all j ∈ 0.

This model is so simple that you can simulate it very easily with Excel.
You can see for example how quickly the paths from nearby starting values
diverge.
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