
COE-C3005 Finite Element and Finite difference methods, Remote

exam 04.06.2021

Problem 1

Determine the angular velocities of the free vibrations of the bar shown by using the Finite Element
Method on a regular grid with {0,1,2}i . Cross-sectional area A, density   of the material, and
Young’s modulus E  of the material are constants.

Solution
The difference equations to the bar and string problems according to the Finite Element Method are
given by (omitting the initial conditions as they are needed in modal analysis)
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Where in this case of a bar problem k EA , m A  , / 2x L  , a u  and external forces vanish.
Equations for the three grid points are
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After using the first algebraic equation to eliminate 0u  from the ordinary differential equations, the
matrix representation, required by the modal analysis, takes the form
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Modal analysis uses the trial solution i te u A  in which A  represent mode and   the corresponding
angular velocity. Substitution into the set of differential equations gives a set of algebraic equations
for the possible combinations ( , ) A :
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First, the possible  values:
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Problem 2

The stationary boundary value problem for the bar shown (jump in the cross-sectional area at x L
) consists of the equilibrium equations for the regular interior points, jump condition at x L , and
displacement boundary conditions for the end points. Write the equation system 0  Ku F  accord-
ing to the Finite Difference Method on a regular grid with {0,1,2,3,4}i  and solve for the displace-
ments. Use the proper forward/backward difference approximation to the first derivative in the jump
condition. Young’s modulus E  and density   of the material are constants.

Solution
The zero displacement boundary conditions for points 0 and 4 are obvious, The difference equations
for the regular interior points 2 and 3, follow when the second order derivative in the stationary dif-
ferential equation is replaced by central difference approximation and the distributed load due to
gravity is evaluated at those points. In the jump condition for the cemterpoint, the first derivatives are
replaced by backward and forward approximations:
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Next, using the boundary conditions to eliminate 0u  and 4u , the remaining equations can be written
in the matrix form
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Solution can be obtained by (Gauss) elimination (or using Mathematica). First, row operations to get
an equivalent upper diagonal form:
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Then, considering the equations one-by-one starting from the last one
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Problem 3

A string of length L , density  , cross-sectional area A , and tightening S  is loaded by its own weight
as shown. If the left end is fixed, the right end is free, and the initial geometry without loading is
straight, find the stationary transverse displacement according to the Finite Element Method with
regular grid {0,1, , }i n  . What is the limit solution when n ?

Solution
In the stationary case all time derivatives vanish and initial conditions are not needed. The generic
equation set for the string and bar models is given the Finite Element Method on a regular grid sim-
plifies to
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where /x L n  . Let us find first the generic solution to the difference equation for the interior points
using the same approach as with differential equations. The generic solution is composed of the ge-
neric solution to the homogeneous equation of the form i
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The generic solution to the difference equation for the interior points
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The limit solution can be obtained by writing the solution first into the form with notation ix xi 
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Problem 4

A rectangular membrane of side length L  and tightening S   is loaded by a non-constant distributed
force ( , ) ( ) /f x y x y f L    in which f  is constant. If the edges are fixed, find the transverse dis-
placement using the Finite Difference Method on a regular grid ( , ) {0,1,2,3} {0,1,2,3}i j    and re-
flection symmetry with respect to the line shown in figure.

Solution
The generic equations for the membrane model with fixed boundaries, as given by the Finite Differ-
ence Method on a regular grid, are
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In the present problem, time derivatives vanish, initial conditions are not needed, and solution is
reflection symmetric with respect to line shown in the figure. Therefore, transverse displacements at
the interior grid points satisfy
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Let us write the equilibrium equations for the interior points one-by-one with the displacement con-
straints. In the Finite Difference Method, external distributed force is evaluated at the grid points.
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As the equations by the Finite Difference Method for the symmetry points (1,2)  and (2,1)   do not
differ, it  is enough to consider  equations for (1,1) , (1,2) , and (2,2) , say. Using the matrix repre-
sentation
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The solution can be obtained by Mathematica or (Gauss) elimination. First row operation to get an
upper triangular matrix:
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Then using the equations in reverse order (starting from the last one)
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