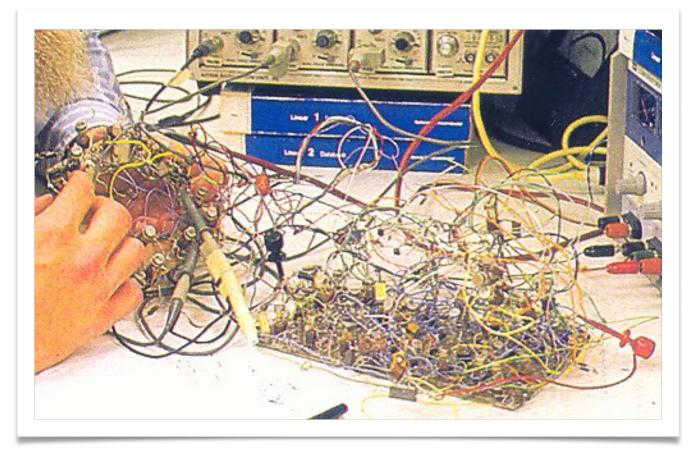
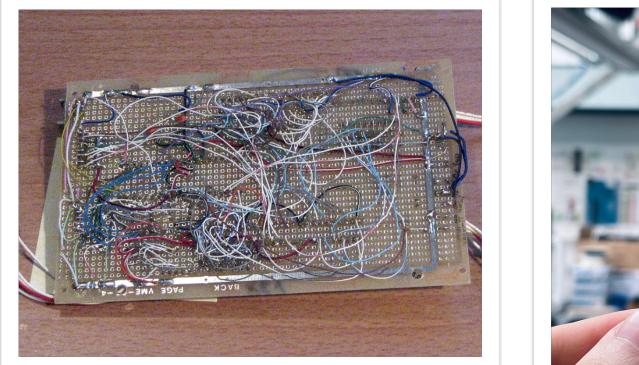
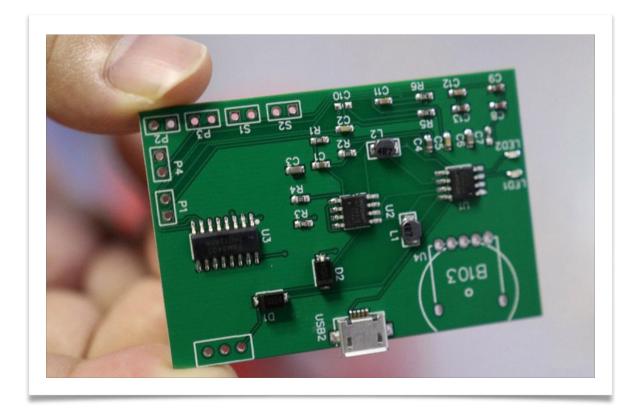

PCB Design & Introduction to KiCad ELEC-D0301 Protopaja



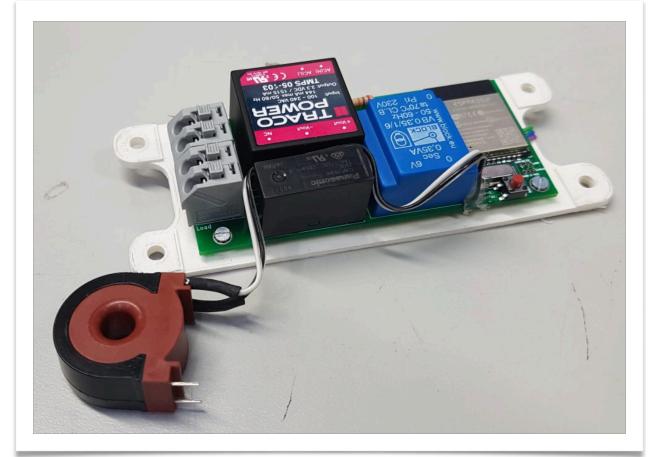
Aleksi Zubkovski (Based on former lectures by Juha Biström)


9.6.2021

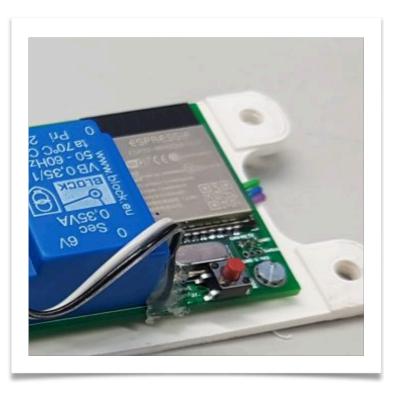
- Good & stable mounting for components
- Reliable wire connections
- PCB CAD ensures that the circuit is properly connected
- Reliable & simple PCB vs breadboard ratsnest of wires

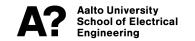


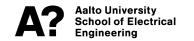
Aalto University School of Electrical Engineering

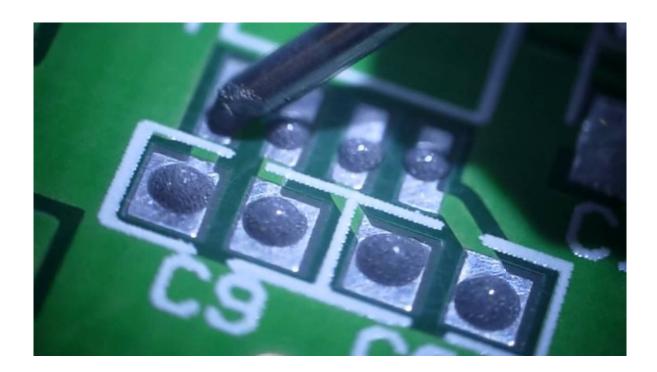


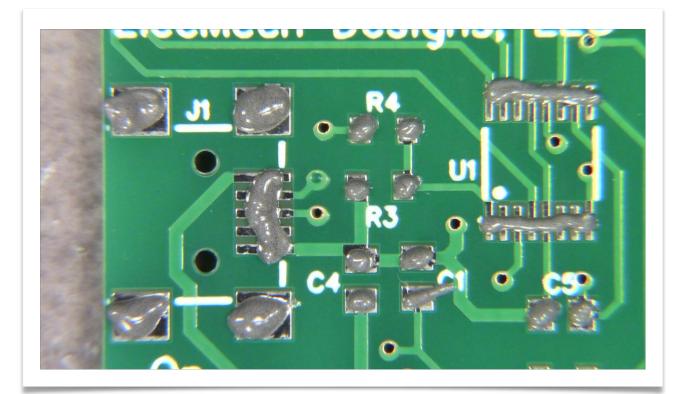
Aalto University School of Electrical Engineering

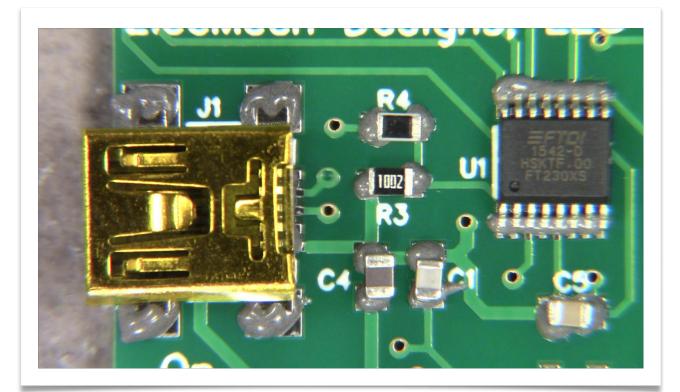


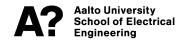


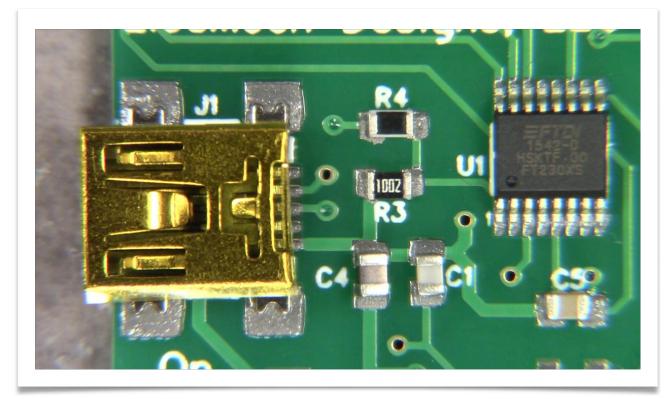





- Good & stable mounting for components
- Reliable wire connections
- PCB CAD ensures that the circuit is properly connected
- Reliable & simple PCB vs breadboard ratsnest of wires
- Clean & representable solution for a final product







KiCad

- OPEN SOURCE PCB CAD
 - Main supporter: Cern
- Commonly used, efficient, versatile tool for designing circuits & PCB's
- Free!

KiCad Subprograms

- Eeschema circuit design
- Symbol editor create and edit own symbols
- Pcbnew Layout design based on circuit
- Footprint editor create own footprints
- Gerber viewer view manufacturing files
- PCB calculator relevant calculators to help PCB design
 - E.g. minimum trace width for specified current

KiCad Workflow

- Create schematic

- (circuit Create own symbols if needed)
- Annotate symbols (components)
- Assign footprints to symbols
 - Choosing component casing types & sizes
 - Create own footprints if needed
 - Can be changed later in case of running out of space on pcb
- Design layout based on previous steps
 - Previous steps can be visited if needed
- Generation of manufacturing files

KiCad Tips

- Memorize at least the most common key shortcuts
 - Speeds up workflow alot
- Grab (g) \leftrightarrow Move (m)
- Rotate (r)
- Wire (w)
- Add component (a)
- Automatic component annotation
- Electrical rules checker
 - e.g. two outputs shall not be connected together, supply voltage has to be present
 - Problems might arise from errors in symbols (Especially self made)
 - Mystic power supply problems are usually due to missing power flags in external supply connection
- A lot of instructions on the Internet
 - <u>http://docs.kicad-pcb.org/5.1.2/en/getting_started_in_kicad/getting_started_in_kicad.html</u>

KiCad Layout Tips

- Start by filling project information & design rules
 - E.g. minimum trace widths & spacings, sizes
 - PCB supplier specific considerations?
- Remember mounting holes, Edges
- Spread components in groups, by functional blocks
- First place critical parts & their traces, then other stuff
 - Connectors are convenient to be but at the edges
 - Indicators, connectors, check points and debug ports should be located on same side of board
 - Switches, potentiometers, displays and other mounted to housing can be wired

KiCad Tips

Cad cheatsheet

http://kicad-pcb.org/help/documentation/

1) Create a project

File → New Project → New Project

2) 🔣 Eeschema : draw the schematic

Add components :
Move item ¹ : 🔓 + M
Grab item ¹ : ↓ + G
Copy item : 🖙 + 🖸
Copy selection : 🕜 Shift + 🖓
Delete item : P + Del
Delete selection : ······ Ctrl + 🔂 Shift + 🗔
Rotate item : 🛼 + ℝ
Mirror item : 🛛 🖓 + 🗶 / 🍸
Add wires :
Edit properties : E
Edit value : VI
Add power symbols : P
Add no-connect : Q
Add text :
Add labels :
List of shortcuts : ?
¹ grab keeps connections, move doesn't

→ 😡 Library editor If editing an existing library : 🔯 Select working library Create new / load component to edit from current library 🔁 💽 🔿 T Draw component Add pins P Update current big component into / D Save current c to new library Save current component current library How to load the new library in Eeschema Preferences → Component libraries Component library files → Add Select your .lib file 4) Create and assign footprints → 🗱 Footprint Editor If editing an existing library : 🔟 Select active library 🔛 New footprint 🖊 🗱 Load footprint from library ⊃ ⊙ ⊃ T Draw component Add pins Save footprint in / Create new library and save current footprint active library Run CvPcb to associate components and footprints

3) Create new components as necessary

	How to load the new library in CvPcb :
•	Preferences → Footprint libraries
	Append with wizard
	Select your .pretty folder
	· · · · · · · · · · · · · · · · · · ·
	Generate netlist
	•
5)	Pcbnew : design the layout

Design Rules → Design Rules + Lavers Setup

→ 🦗 Read netlist	
Select top layer :	PgUp
Select bottom layer :	↓ PgDn
Move item ¹ :	·····
Grab item ¹ :	·····
Copy item :	·····
Rotate item :	
Add tracks :	· · · · · · · · · · X
Add via :	· · · · · · · · · V
Switch posture :	Q
Switch track width :	W
Drag track :	D
Fill zones :	B
3D viewer : Alt (+ 😭	Shift)+3
¹ grab keeps connections, move doesn't (Only	for AZERTY keyboards)
•	
6) Export Gerbers	- ALLER AND A
File → Plot	Bien
Generate Drill File + Plot	 Check result using GerbView

Anthony Gautier - http://silica.io

PCB Trace Width Calculator

Printed Circuit Board Width Tool

This Javascript web calculator calculates the trace width for printed circuit board conductors for a given current using formulas from IPC-2221 (formerly IPC-D-275).

Inputs:

Current	10	Amps	
Thickness	2	mm 😳	

Optional Inputs:

Temperature Rise	10	Deg C 😊
Ambient Temperature	25	Deg C 😑
Trace Length	1	mm 💿

Results for Internal Layers:

Required Trace Width	0.328	mm 😊
Resistance	0.0000270	Ohms
Voltage Drop	0.000270	Volts
Power Loss	0.00270	Watts

Results for External Layers in Air:

Required Trace Width	0.126	mm 😊
Resistance	0.0000701	Ohms
Voltage Drop	0.000701	Volts
Power Loss	0.00701	Watts

Notes:

The trace width is calculated as follows:

First, the Area is calculated:

Area[mils^2] = (Current[Amps]/(k*(Temp_Rise[deg. C])^b))^(1/c) Then, the Width is calculated:

Width[mils] = Area[mils^2]/(Thickness[oz]*1.378[mils/oz])

For IPC-2221 internal layers: k = 0.024, b = 0.44, c = 0.725

KiCad Review

