

Aalto University School of Electrical Engineering

Space Instrumentation Magnetism and applications 7.6.2020

Prof. Eija Tanskanen

Aalto University School of Electrical Engineering Department of Radio Science and Engineering

Aalto University School of Electrical Engineering

Today

Ground-based space weather measurements:

Magnetometers & all-sky cameras Magnetic measurements Geomagnetic activity indices

Brief history of magnetic measurements

- First scientific magnetometer 1832 (Gauss)
- First scientific satellite 1958 (Explorer I)
- First magnetotail observations 1965
- Continuous ground-based observations since 1966 (Kyoto AL)
- Solar wind observations since 1966, continuous L1 observations since 1997 (ACE)

Detecting (geo)magnetic activity (and currents)

Geomagnetic activity can be detected by all-sky cameras, magnetometers, radars, riometers, ionosondes, satellites ...

... or by an astronaut from a space shuttle

Geomagnetic activity detected by magnetometers

Analog magnetometer from 1960's

Modern ground-based magnetometers

Flux gate magnetometer for scientific measurements

Helicopter magnetometer for magnetic surveys

Spacecraft magnetometers

Eija Tanskanen, 2016

Ingo Richter, 2010

All-sky cameras

Dalat, Vietnam

Magnetometer chains

- IMAGE network
- CARISMA (earlier CANOPUS)
- 210 CHAIN
- Greenland chain
- MAGDAS
- Scandinavian SME (only historical data).

Magnetometer networks

Aalto University School of Electrical Engineering Courtesy of Häkkinen

Conjugate magnetic measurements

Geomagnetic storm signature & detection

Geomagnetic storms detected by magnetometers close to magnetic equator, not exactly at the equator due to the equatorial electrojets.

Equatorial electrojet

Geomagnetic storm index: Dst index

Formed as an envelope curve from the 12 equatorial magnetometers.

Geomagnetic activity at high-latitudes during storms

Extreme and moderate activity

Magnetospheric substorm

• Magnetospheric substorms i.e. Birkeland's polar elementary storms, auroral substorms, etc.

One substorm definition

"Magnetic substorm is a transient process, in which a significant amount of energy is carried from the solar wind into the auroral ionosphere and magnetosphere".

McPherron et al. 1979

"Typical" auroral substorm

- All substorms are different, there is not "a normal" substorm. Statistical properties can be computed, but they need to be understood as average properties and not a single such substorm does not need to exist.
- A typical substorm signature: a negative bay in north-south (X) component of the terrestrial magnetic field.

Westward electrojet index AL/IL/SML/CL

IMAGE chain 16-03 UT (about 18:30 - 05:30 MLT)

12 MLT

 Following AL description IL index is formed based on IMAGE ground-based magnetic measurements in UT-sector 16-03 UT.

Latitudinal variation of substorms

- Substorms were categorized in the latitude bins according to the station where the maximum deviation of the X component was recorded
- Latitudinal zones from north to south (geogr. coord.)
 - north of 76°
 - 73° 76°
 - 69° 73°
 - $-65^{\circ}-69^{\circ}$
 - south of 65°

Auroral oval during a storm and a substorm

Storms

Storm-time substorms and non-storm substorms

Site of maximum dH/dt i.e. substorm onset location is dramatically more north for non-storm than storm-time substorms.

Substorm morphology

Typical <u>storm-time substorm</u> is about twice as intense and carries about 2.5 times more energy into the ionosphere than a typical <u>non-storm substorm</u>.

