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1 Basic Theory
The increasing operating and clock frequencies require transmission line theo-
ry to be considered more and more often!

1.1 Some practical transmission lines (waveguides)

Twin wire = Parallel two-wire
Twisted pair
Coaxial line
Slabline
Stripline
Microstrip line
Coplanar waveguide (CPW)
Optical fibre
Rectangular or circular waveguide
Electromagnetic waves in free space or dielectric
(Soundwaves and transmission line analogy)

s, ∆t

Fig. 1. A lossless transmission line; length s, delay ∆t. No conductor resistances, no
leakage between the conductors (ideal dielectric). Thus transmission line is exactly
like a normal line.

Transmission line concept is needed if the line length s exceeds roughly
λ/50 (or λ/10 . . . λ/100), where lam(b)da λ is the wavelength of the signal.
Also if the rise time or the length of a pulse is shorter than about 2∆t, trans-
mission line theory should be used.
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Possible reflection

s, ∆t

Fig. 2. A pulse moving on the line.
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Transmission line theory is not needed if the lines are relatively short or if
the pulses are long enough. Transmission line phenomena become obvious at
higher frequencies, but you don’t necessarily encounter these issues in every-
day life.

1.2 Circuit theoretical model
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Fig. 3. A small section of a lossless transmission line (length dz) modelled using
lumped components, where l is inductance per unit length and c is capacitance
per unit length (both distributed along the line); they are both dependent on the
mechanical dimensions and the dielectric material.

1.3 Transmission line parameters

Characteristic impedance, wave velocity (= speed of light in the dielectric
material), delay (s = line length in meters)

ZC =

√
l

c
(1)

v =
1√
lc

=
1√
µε

=
c0√
µrεr

∆t =
s

v
(2)

1.3.1 Electrical material parameters

Permeability and relative permeability, permittivity (dielectric constant) and
relative permittivity, speed of light in vacuum:

µ = µrµ0 µ0 = 4π 10−7 H/m (3)
ε = εrε0 ε0 = 8.854 10−12 F/m (4)

c0 =
1√
µ0ε0

≈ 3.0 · 108 m/s (5)
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Note that µr ≈ 1 for all non-magnetic (= non-ferromagnetic) materials
(= paramagnetic and diamagnetic materials). Copper is diamagnetic µr =
0.9999906 < 1, but air is paramagnetic µr = 1.00000037 > 1. In vacuum,
εr = 1 and µr = 1. Thus ε0 and µ0 (mu-subzero) are the permittivity and
permeability of vacuum, respectively.

1.3.2 Skin depth

The current density decreases exponentially as we go deeper inside a conduc-
tor. The phenomenon is caused by the so called eddy currents. Most of the
current flows near the surface of the conductor inside a layer not deeper than
δ (delta).

δ =
1√

πfµσ
(6)

where sigma σ = 1
ρ

is the conductivity (about 58 MS/m for copper, 1 S = 1 1
Ω

and ρ (rho) is the resistivity. The conductor resistances increase very much at
higher frequencies.

1.3.3 Coaxial line parameters

l =
µ

2π
ln

router

rinner

c =
2πε

ln router

rinner

(7)

1.3.4 Twin wire (d = distance of the conductors)

l =
µ

π
ln

d

rconductor

c =
πε

ln d
rconductor

(8)

ZC =

√
l

c
(9)
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2 DC Waves and Pulses

2.1 Interpretation of the characteristic impedance

i+
-

u+

?

i−
¾

u−
?

- ¾

-z-axis

Fig. 4. Electromagnetic waves moving to the positive and negative direction of the
horizontal axis (usually called the z-axis).

i+ =
u+

ZC

i− =
u−
ZC

(10)
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Fig. 5. A d.c. voltage connected on the line. The voltage divider rule is used. Voltage
u+ and current i+ form the wave travelling to the line.

ZC

Fig. 6. The specific circuit element symbol of a transmission line (optional). Note!
The bars are NOT resistances!!!!
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2.2 Border conditions
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Fig. 7. Reflection at a discontinuity between two transmission lines. The incoming
wave u1 is partly reflected back (u3) and only partly transmitted to the second line.
Note that for the first line, u1 = u+, i1 = i+, u3 = u− and i3 = i−.
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Fig. 8. Reflection at load ZL. This case is mathematically exactly similar to the pre-
vious one.

i1 − i3 = i2 (11)
u1 + u3 = u2 (12)

The former equation can be interpreted as the Kirchhoff’s current law and
the latter one applies the superposition principle: u1 and u3 are separate wa-
ves that are added to get the total voltage. If u1 and u3 are both positive u2

is greater than u1. This may sound strange, but in fact, the power is NOT
increased!

u1
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?
u3 > 0

u2
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6u3 < 0

?
u2

Fig. 9. Voltage superposition.

i1 =
u1

Z1

(13)

i2 =
u2

Z2

(14)
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i3 =
u3

Z1

(15)

2.2.1 Reflection and transmission coefficients

u1

Z1

− u3

Z1

=
u1 + u3

Z2

(16)

⇒ u3 =
Z2 − Z1

Z2 + Z1︸ ︷︷ ︸
ρ

u1 (17)

u1 + ρu1 = (1 + ρ)︸ ︷︷ ︸
τ

u1 = u2 (18)

ρ =
Z2 − Z1

Z2 + Z1

(19)

τ = 1 + ρ =
2Z2

Z2 + Z1

(20)

2.2.2 Propagating power

p1 =
u2

1

Z1

(21)

p2 =
u2

2

Z2

(22)

p3 =
u2

3

Z1

(23)

2.2.3 Voltage divider rule for a wave coming from a lumped source

+

−
e ZC
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u

?

-

Fig. 10. The wave propagating to the line is found by using the voltage divider rule
(as shown in Fig. 5).

u = u+ =
ZC

ZS + ZC

e (24)
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2.2.4 Shunt and series resistors

Z1 R Z2u1
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-

Fig. 11. Reflection at a shunt resistor.
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Fig. 12. Reflection at a series resistor.

2.2.5 Repeated reflections
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Fig. 13. The final voltages are a combination of infinite number of repeated
reflections and transmissions.
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Fig. 14. Finding the voltages as a function of time. Voltage uA(0) = uA+ is first
found by the voltage divider rule.
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3 Sinusoidal signals
The repeated-reflections-technique would be very complicated in the sinusoi-
dal case because of the phase difference of the waves. Usually one is mainly
interested in the final continuous waveforms that are result of (infinite) num-
ber of repeated reflections.
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?

ZL

Fig 15. Voltage and current at both ends of the line (length s).

3.1 Voltage and current
The final effective voltage and current values can be found using the following
equations:

Ua = Ub cos βs + jZCIb sin βs (25)

Ia = j
Ub

ZC

sin βs + Ib cos βs (26)

ZC =

√
l

c
(27)

v = λf =
s

∆t
=

c0√
εr

=
1√
lc

(28)

β =
ω

v
=

2π

λ
= ω

√
lc (29)

∆t = s/v = s
√

εr/c0 (30)

where β is the phase coefficient (wave number) in rad/m.
Equations in matrix form:

[
Ua

Ia

]
=

[
cos βs jZC sin βs

j 1
ZC

sin βs cos βs

] [
Ub

Ib

]
(31)

[
Ub

Ib

]
=

[
cos βs −jZC sin βs

−j 1
ZC

sin βs cos βs

] [
Ua

Ia

]
(32)
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3.2 Impedance transformation

Load impedance seen through the line:

Za =
Ua

Ia

=

ZLIb︷︸︸︷
Ub cos βs + jZCIb sin βs

j Ub

ZC
sin βs + Ib cos βs

=
ZL cos βs + jZC sin βs

jZL sin βs + ZC cos βs
ZC(33)

Za

ZC

=
ZL

ZC
+ j tan βs

1 + jZL

ZC
tan βs

(34)

The last equation is the definition of the Smith Chart. Smith Chart is a grap-
hical tool for calculating impedance or its reflection coefficient along the line.

3.3 Lossy line

If the losses are taken into account:

Ua = Ub cosh γs + ZCIb sinh γs (35)

Ia =
Ub

ZC

sinh γs + Ib cosh γs (36)

Propagation constant γ and characteristic impedance ZC:

γ = α + jβ =
√

(r + jωl)(g + jωc) (37)

ZC =

√
r + jωl

g + jωc
(38)

Attenuation:

A = 20 lg eαs dB = 8,686 αs dB (39)
A = αs Np (40)
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3.4 Standing wave ratio, SWR
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Seisova aalto: rho = -0,5 U+ = 1 V

APLAC 7.50 Student version FOR NON-COMMERCIAL USE ONLY 

|U|/V

-z/lamda

Fig. 16. A standing wave U+ = 1 V, U− = ρU+, ρ = −0,5.

σ = SWR =
UMAX

UMIN

=
1 + |ρ|
1− |ρ| (41)

|ρ| = σ − 1

σ + 1
=

UMAX − UMIN

UMAX + UMIN

(42)

3.4.1 Maxima and minima in a standing wave

UMAX = (1 + |ρ|)U+ UMIN = (1− |ρ|)U+ (43)

IMIN = (1− |ρ|)U+

ZC

IMAX = (1 + |ρ|)U+

ZC

(44)

4 Smith Chart
—


