

RF IC Amplifiers

► Focus on specific RF IC amplifiers

LNA and PA

► Some words on buffers

- ► Exercises & Homework
 - Self-learning material
 - CAD exercise
 - Homeworks

Basic Small-Signal Amplifiers & Analysis

DC Analysis

- Operating point
- DC current

AC Analysis

- Gain
- Frequency response
- Input & output impedance
- Stability

Basic Small-Signal Amplifiers & Analysis

DC Analysis

- Operating point
- DC current

AC Analysis

- Gain
- Frequency response
- Input & output impedance
- Stability

Main message: RF ICs include conventional amplifier stages and their design resembles that of low frequency basic stages.

Bias Circuits

CMOS RF IC circuits have same type of bias arrangments as LF circuits.

Guidelines:

- 1) Isolate RF signals from bias circuits
- 2) Add low-imp node to bias circuit
- 3) Consider noise coupling, stability, VDD droop etc. just like in LF circuits Interference reduction important; e.g. harmonics of a digital clock

Impedance Matching "S11" and "S22"

Why do we need input matching for LNA and output matching for PA?

Impedance Matching "S11" and "S22"

Why do we need input matching for LNA and output matching for PA?

Reason 1:Matching is needed to maintain the correct frequency response of external passive filters.

Reason 2: in LONG interconnections, **signal reflections** results in frequency-depent signal level variations.

Low-Noise Amplifier

Four basic circuit arrangements

- Resistive termination
- 2. Parallel feedback
- 3. Common gate
- 4. Inductive degeneration

LNA critical design targets

- 1. Gain
- 2. Noise Figure
- 3. Linearity
- 4. Matching

All are frequency dependent !!

Best performance for all these is not met with same dimensioning

→ Compromize is needed

Examples of advanced circuits; "noise cancellation"

Basic LNA Configurations

Resistive termination

Parallel feedback

Common gate

Inductive degeneration

Input Matching

Resistively terminated

$$Z_{in} = R_m \| Z_{in,T} \|$$

Feed-back

$$Z_{in} = \frac{1}{\sqrt{Z_{in,T} + g_{m,T}}}$$

Common gate

$$Z_{in} = \frac{1}{g_{m,T}}$$

Inductively degenerated

$$Z_{in} = \frac{g_{m,T}L_s}{C_{gs}} + j\left(\omega(L_g + L_s) - \frac{1}{\omega C_{gs}}\right)$$

Voltage Gain

The voltage gain of the four configurations can be compared by comparing the transconductance $(G_m = |I_{out}/v_{in}|)$ of each LNA

Resistively terminated

$$G_m = g_m$$

Feed-back

$$G_{m} = \left| \frac{g_{m}R_{fb} - 1}{R_{fb} + Z_{L}} \right| \qquad A_{v} \approx \left| g_{m}R_{fb} - 1 \right|$$

$$A_{v} \approx \left| g_{m} R_{fb} - 1 \right|$$

Common gate (matching req Rin=1/gm≈50)

$$A_{v} = \left| \frac{Z_{L}(j\omega)}{R_{in}} \right|$$

• Inductively degenerated
$$G_m = \frac{1}{\omega_r L_s}$$
 (independent of g_m !)
$$G_m = \left| \frac{g_m}{(j\omega L_g + j\omega L_s - j/\omega C_{gs})j\omega C_{gs} + j\omega L_s g_m} \right|$$

$$G_m = \frac{1}{\omega_r L_s}$$

Noise Figure

Resistively terminated

$$NF = 10\log\left(2 + \frac{\overline{e_{n,out,q}^2}}{kTBR_s(A_v)^2}\right)$$

Feed-back

$$NF = 10\log\left(1 + \frac{R_{s}}{R_{fb}}\left(1 + \frac{R_{fb} + R_{s}}{R_{fb} - R_{s}}\right)^{2} + \frac{\overline{e_{n,out,q}^{2}}}{kTBR_{s}(A_{v})^{2}}\right)$$

Common gate

$$NF = 10\log(1+\gamma) \approx 3...5 dB$$

Inductively degenerated

$$NF = 10\log\left(1 + \frac{e_{n,out,q}^2}{kTBR_s(A_v)^2}\right)$$

Linearity - IIP3

The IIP3 for the memoryless and time-invariant system

$$A_{IIP3} = \sqrt{\frac{4}{3} \left| \frac{\alpha_1}{\alpha_3} \right|} \qquad IIP3(dBm) = 10\log \left(\frac{A_{IIP3}^2}{2R_S} \cdot 1000 \right)$$

- For a MOSFET IIP3 related math goes quite complicated
 → we'll rely on simulations
- Traditional study is for BJT collector current

$$I_{c} = I_{S}e^{\frac{V_{BE} + v_{in}}{V_{T}}} = I_{S}e^{\frac{V_{Be}}{V_{T}}} \left[1 + \frac{v_{in}}{V_{T}} + \frac{1}{2} \left(\frac{v_{in}}{V_{T}} \right)^{2} + \frac{1}{6} \left(\frac{v_{in}}{V_{T}} \right)^{3} + \dots \right]$$

$$IIP3 = 10\log\left(\frac{4V_T^2}{R_S} \cdot 1000\right)$$
 Estimated IIP3 for resistively terminated and common-base BJT LNAs is -13 dBm

Comparison of LNA stages

	Resistive termination	Resistive feedback	Common gate	Inductively degenerated
S11	*	*	*	*
Gain	*			
NF	6 * 6 *	€ **	6 **	*
IIP3		*		*
Bandwidth	*	*	*	6 ^¾

Broadband high-linearity LNA (RX) is a BIG challenge!

Advanced Example I

CG / CS topology with cross-coupled capacitors

- [1] W. Zhuo et al, "Using capacitive cross-coupling technique ...", ESSCIRC 2000
- [2] W. Zhuo et al, "A Capacitor Cross-Coupled Common-Gate Low-Noise Amplifier", IEEE CAS-II, Dec. 2005
- [3] J. Borremans et al, "A sub-3dB NF voltage-sampling front-end ...", ESSCIRC 2010

Advanced Example II

CG - CS topology with signal summing

- [1] S. C. Blaakmeer et al, "Wideband balun-LNA ...," IEEE J. Solid-State Circuits, June 2008
- [2] J. Jussila et al, "A 1.2-V highly linear balanced noise-cancelling LNA ...," IEEE J. Solid-State Circuits, March 2008
- [3] K. Stadius et al, "A 0.7 2.6 GHz High-Linearity RF Front-End for Cognitive Radio Spectrum Sensing," ISCAS 2011

Advanced Example III

I. Fabiano, M. Sosio, A. Liscidini, R. Castello, "SAW-Less Analog Front-End Receivers for TDD and FDD", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 48, NO. 12, DECEMBER 2013

Break

Power Amplifiers

- PA is an amplifier, which has significant output power
 - → cannot be treated as a small-signal amplifier
- PA design differs significantly from the other RF IC building blocks:
 - Large signal behavior
 - thermal effects
 - Wiring & transistor size, layout
 - Packaging & Interconnections
 - breakdown voltages

Pout ~1 W Pout ~1 W IDC ~ ½ A Pre-power amplifier

Topics

- Figures of Merit
- Classes of Operation (A, B, AB, C, D, E, F, S)
- Comparison on PA classes

Large current

- →large FET
 - → large die area
 - \rightarrow expensive IC

Figures of Merit

- PA must deliver a sufficient power to the antenna with good efficiency and appropriate linearity.
- Available current through the transistor, supply voltage and load impedance effect on the output power.

$$P_{L} = V_{OUT,RMS} \cdot I_{OUT,RMS}$$

$$R_L = \frac{V_{\text{OUT,RMS}}^2}{P_L}$$

Figures of Merit

- Efficiency
 - Describes how effectively the power amplifier transforms the power taken from supply as signal power
 - How much of the supply power transforms as unwanted heat

$$\eta = \frac{P_{OUT}}{P_{DC}}$$

Figures of Merit

Efficiency

- Describes how effectively the power amplifier transforms the power taken from supply as signal power
- How much of the supply power transforms as unwanted heat

$$\eta = \frac{P_{OUT}}{P_{DC}}$$

- Efficiency does not take into account the input signal
- Power added efficiency (PAE) does take it into account

$$PAE = \frac{P_{OUT} - P_{IN}}{P_{DC}} = \frac{P_{OUT}}{P_{DC}} \left(1 - \frac{1}{G} \right) = \eta \left(1 - \frac{1}{G} \right)$$

Linearity Requirements

- Use a modulated signal as input signal and examine its behavior at PA output.
- Signal spreading is characterized with adjacent channel leakage ratio (ACLR).

Power Amplifier Classes

Current mode "Linear PA"

Switching mode "Non-linear PA"

Class A

Class **B**

Class C

Class **D**

Class E

Class **F**

Class S

"Ordinary" amplifier, Idrain off only for a while

Transistor is a switch Idrain on-off Output network modifies signals

Operation Principles

Linear PA (class A, B, C)

Class A: conduction angle 100% (I_{DD} flows all the time)

Class B: conduction angle 50% Class C: conduction angle → 0%

Linear PAs

Class A

- Conduction angle 100%
- 50% efficiency is reached at maximum output power
- Rapid degradation in lower powers
- Consumes significant power without input signal

Class B

- Conduction angle 50% → lower DC power
- maximum efficiency 78,5%
- Slower degradation in lower powers
- Gain 2-6 dB lower compared to class A

Class B push-pull

- Linearity of class B PA can be improved by using a push-pull topology
- Each PA branch must produce only half of the output power →relaxes the design of output matching network
- Optimum output load resistance of each branch is double
- Requires additional inductors

Class C

- Conduction angle 0% 50% → low DC power
- In ideal case PA has a negative biasing point → reverse breakdown voltage requirement
- Nonlinear
 - Class C PA is most suitable for phase modulation systems.
- Class C PA can be designed using similar equations as class A and B PAs.

Nonlinear PAs

- Class D, E, F, and S power amplifiers
- In high efficiency PAs the design principle is to minimize the voltage-current product over the transistor.
- The losses degrading efficiency arise from transistor nonidealities (internal capacitors, resistors, finite rise and fall times) and from losses in matching networks and losses to substrate.

Class D

 PA includes switch S, series resonator (L_o, C_o, and R_L) and biasing inductor L_{RFC}.

Class D

• PA includes switch S, series resonator (L_o , C_o , and R_L) and biasing inductor L_{RFC} .

Class S

- Class S PA is identical to class D PA when comparing its analysis and design equations.
- Difference in these PAs is in the topology.
- Applications of class S PA can be typically found from audio frequency amplifies.

Class E

 Operation principle of the class E PA is to minimize the losses caused by the nonidealities of switch.

Class F

- In class F PA the efficiency is increased by using harmonic resonators to modify the output current and voltage waveforms
 - Adding harmonics to transistor current and voltage waveforms the transistor waveform begins to approach the ideal switch waveform

Buffers

How to drive large devices i.e. low-impedance nodes?

- High gain = large R, but C_L in parallel \rightarrow low gain
- Driving capability $\sim \frac{I_{bias}}{\omega C_L V_{sig}}$

Buffers

How to drive large devices i.e. low-impedance nodes?

- High gain = large R, but C_L in parallel \rightarrow low gain
- Driving capability $\sim \frac{I_{bias}}{\omega C_L V_{sig}}$

Examples

Buffers

Source follower

Super source-follower

voltage gain ≈ 1

$$R_{out} \sim \frac{1}{g_m} + caps$$

BTW, you can almost always replace resistor R with a FET i.e. active load or current source.

Self-Learning Assignment 3

Objectives are to familiarize yourself with

- typical RF IC LNA design issues
- doctoral dissertation on the RF IC field

You can find the assignment from

MyCourses / Assignments - SLA / Self-learning assignment 3

Return your answer as a pdf-file to Return Box in the same page

Next Meeting Tuesday 19.4.

Topics will be

- concepts related to mixers
- active mixers
- passive mixers
- examples