

2 applications of portfolio decision analysis

Antti Korkealaakso Presentation 8 15.10.2021

> MS-E2191 Graduate Seminar on Operations Research Fall 2021

The document can be stored and made available to the public on the open internet pages of Aalto University. All other rights are reserved.

Content

- 1. Application 1: Improving European air traffic management
- 2. Application 2: Investment in natural capital and ecosystem services

Application 1: Improving European air traffic management

Application 1: Overview

- Problem: Airport and air traffic network capacity limits air transportation
 - ATM system is outdated and not unified
- Objective: Improve air traffic management (ATM)
 - Capacity, safety, environmental effects, ATM costs etc.
- Decision-makers
 - E.g., Airlines, airports, air navigation service providers (ANSP)

\rightarrow Multistakeholder, multicriteria decision-making problem

15.10.2021 4

Application 1: Operational improvement portfolios

Source: Grushka-Cockayne et al. (2008)

15.10.2021 5

Application 1: Arrival and departure support with precision area navigation

Consists of five projects

Components		In			
P-RNAV	A0 Stay with current	A1 Implement during departure and arrival			
AMAN and DMAN	BO Stay with current	B1 AMAN	B2 DMAN	B3 B1 and B2	B4 B3 and sequencing tool
WV	CO Stay with current	C1 Reduced WV minima	C2 Improved onboard WV visualization	C3 C1 & C2	C4 Alternative procedures
TBS	D0 Stay with current	D1 Fixed-minimum TBS	D2 Varying TBS		
B-CDA	E0 Stay with current	E1 Implement	ins fue		

Source: Grushka-Cockayne et al. (2008)

Aalto University **School of Science**

15.10.2021 6

Application 1: Selection of projects

- Implementing project results in trade-offs in the objectives
- The projects are not independent
- Several ways to implement project
- Differences in the stakeholder priorities
- Qualitative assessment
- Performance targets

15.10.2021 7

Application 1: Formulation of the optimization problem

- Objectives measured by 14 indicators
 - Qualitative and quantitative

• Indicators chosen so that they are preferentially independent

- Due to stakeholder disagreements each indicator has weight for each stakeholder
 - -> Allows the use of overall performance score and the ranking of projects for each stakeholder separately
- Optimal project combinations differ
- Eurocontrol wants joint commitment by all stakeholders
 - -> Overall objective is to maximize performance score over all stakeholders

Application 1: Formulation of the optimization problem

$$\max \sum_{m(1)=1}^{|I(1)|} \dots \sum_{m(|O|)=1}^{|I(|0|)|} \sum_{k=1}^{|S|} \lambda^k \sum_{j=1}^{|P|} w_j^k \cdot v_j^k (h_j^k(e_{1,m(1),j}^k, ..., e_{|O|,m(|O|),j}^k)) \prod_{q=1}^{|O|} x_{q,m(q)}$$

• Subject to

- Performance targets are achieved
- The budget can not be exceeded for any stakeholder
- Single implementation mode for each project

• The model is nonlinear

Application 1: Dependencies between projects

- The joint effect of projects can either be
 - Independent
 - The total performance is additive
 - Antagonistic
 - The joint effect is lower
 - Synergistic
 - The joint effect is higher

• Heuristics was developed to estimate the joint effects

• No need to assess performance impact of each possible combination of implementation modes separately

15.10.2021 10

Application 1: Dependencies between projects

Individual effect of projects

• DMAN (departure manager assist) = 25%, WV (wake vortex) = 15%

• Joint effect: Antagonistic

- Let us consider increasing the capacity
- $0.25 + (1 0.25)^2 * 0.15 = 33\%$

• Joint effect: Synergistic

- Let us consider enchantments on on-time arrivals
- (1.25 * 1.15) 1 = 44%

15.10.2021 11

Application 1: Linear model

- Bundles of implementation modes are considered
 - E.g. (AO, BO, CO, DO, EO) or (A1, B1, CO, DO, EO)
- The objective: $\max \sum_{i=1}^{|N|} \sum_{k=1}^{|S|} \lambda^k \sum_{j=1}^{|P|} w_j^k v_j^k (te_{i,j}^k) z_i$
- For our problem there are only 300 different bundles
 - Possible to compute value of the objective for each bundle
- The number decision variables grows exponentially

15.10.2021 12

Application 1: Results, Indicator weights

MS-E2191 Graduate Seminar on Operations Research: "Introduction to Portfolio Decision Analysis and Efficiency Analysis"

Application 1: Results, Cluster version

Rank		Airlines		Airports	ANSP			
	Cluster version	Components	Cluster version	Components	Cluster version	Components		
1	290	A1 B4 C3 D2 E1	180	A1 B4 C2 D0 E1	140	A1 B4 C3 D2 E0		
2	140	A1 B4 C3 D2 E0	230	A1 B4 C2 D1 E1	90	A1 B4 C3 D1 E0		
3	240	A1 B4 C3 D1 E1	280	A1 B4 C2 D2 E1	290	A1 B4 C3 D2 E1		
Source	: Grushka-C	ockayne et al. (2008)						

 Project implementations A1 and B4 are in the topranking clusters for all stakeholders

15.10.2021 14

Application 1: Results, Pairwise comparisons

The nondominated clusters are on the dashed lines

15.10.2021 15

Application 1: Sensitivity analysis

• Within stakeholders

- Weights assigned by stakeholders randomly generated
- Expected performance impact considered as a range
 - Cluster 140 is the only top-ranking among all stakeholders

Across stakeholders

- Weights assigned to stakeholders
 - Robust portfolio modeling
 - A1 is recommended even if more information becomes available

Application 1: Implementation

- The focus of Eurocontrol is on cluster 140 and 290
- Even though there is no single best cluster the does not mean that the analysis was worthless
- Analysis provided new information about the joint implementation of projects

Application 2: Investment in natural capital and ecosystem services

Application 2: Overview

• Problem:

 Allocating budget to conservation, management and restoration projects that offer the highest return

• Challenge:

• Uncertainty in the model parameters

15.10.2021 19

Preference information						
sets and ecosystem services	Target ID	(NC1) Water	(NC2) Land	(NC3) Biota	(NC4) Atmosphere	(BC1) Built Environs
rojects)	A1.1	0	0	0	7	5
	A1.2	1	3	3	3	2
	A1.3	0	0	0	3	3
	A1.4	1	4	6	8	0
e scored on scale a scale from	A2.1	3	4	1	1	2
	B1.1	3	3	8	1	0
	B1.2	2	5	10	5	1
	B1.3	1	3	10	1	0
	B1.4	2	3	5	3	2
	B2.1	10	7	10	1	1
	B2.2	7	5	8	1	0
	B2.3	4	2	9	1	0
	B2.4	0	3	8	0	0
	B3.1	0	0	10	0	0
	B3.2	2	4	10	1	0

Application 2:

- 32 capital as • (objectives)
- 46 targets (p
- Impacts were lacksquare-10 to 10

Source: Bryan (2010)

15.10.2021 20

L 0 0 L (BC2) Zoning & Planning

1 1

Application 2: Uncertainty

• Uncertainty in many key parameters

- Costs
- Benefits
- Background level of target
- Available budget

• Incomplete information is presented with three values

• Most likely (ml), minimum and maximum value

Application 2: Robust portfolio selection

- Robustness is achieved by solving the model with different parameters
 - Three different decision rules
 - Optimistic (c_k^{min} , b_k^{max} and T_k^{min}), most likely, pessimistic
 - Three different budgets
 - Four different investment strategies
- Robustness quantified by a core index
 - Core targets are fully invested with every combination of parameters and budgets

Application 2: Investment strategies

• E-max

- Investments with highest benefit to cost ratio
- E-max*
 - Considers also the obligations and prior commitment

• B-rank

- Investments with the highest benefit
- C-rank
 - Investments with lowest cost

15.10.2021 24

Application 2: Results, Core indices

- Investment classification:
 - Core
 - Borderline
 - External

Aalto University School of Science

• E-max, E-max* and C-rank have similar portfolio compositions

	E-max				E-max*				C-rank			B-rank				
	37.5M	62.5M	87.5M		37.5M	62.5M	87.5M		37.5M	62.5M	87.5M		37.5M	62.5M	87.5M	
		~ 0			~ 0	~ 0	~ 0		~ 0		~ 0		~ ~	~ 0	~ 0	
+	stic ikely	stic ikely	stic ikely	dex	stic ikely	stic ikely	stic ikely	dex	stic ikely nistic	stic ikely iistic	stic ikely	xabi	stic ikely nistic	stic ikely	stic ikely	dex
de	st L ssirr	st L ssirr	st L ssirr	el	st L ssirr	st L ssir	st L ssirr	elr	st L ssir	st L ssirr	st L ssir	el	st L ssirr	st L ssirr	st L ssirr	er
Та	Op No Pes	Op Mo Pes	Mo Pes	Col	Opi Mo Pes	Op Mo Pes	Mo Pes	CO	Op No Pes	Op No Pes	Op Mo Pes	CO	Mo Pe	Mo Pes	Opi Mo Pe	CO
A1.1				100 C				100 C				100 C				0 E
A1.2				100 C				100 C				100 C				0 E
A1.3				67 B				56 B				100 C				0 E
A1.4				100 C				89 B				100 C				0 E
A2.1				100 C				89 B	/			100 C				0 E
B1.1				100 C				100 C				100 C				33 B
B1.2			_	0 E				0 E				0 E		_		93 B
B1.3				33 B				33 B	_			16 B				33 B
B1.4				60 B			_	63 B				80 B		- C		0 E
B2.1				14 B		_		21 B	- ·			5 B		_		33 B
B2.2	-			100 C				87 B				78 B				87 B
B2.3				67 B				20 B				89 B				11 B
B2.4			-	78 B	-			// B				100 C				0 E
D3.1	-			TU D				26 D		-		11 D				11 0
111				30 B	-			30 B				78 B			-	0.5
112			1 A.	67 B				44 D				80 B				11 B
113				100 C				100 C				79 B				100 C
114				0 E		-		60 B				0 F				52 B
L2.1				11 B				13 B				22 B				0 E
L2.2				22 B				13 B				17 B				20 B
L2.3				29 B		1		11 B				33 B				11 B
L2.4				88 B				78 B				89 B				11 B
W1.1				22 B				18 B				100 B				0 E
W1.2			1	100 C				100 C				100 C				67 B
W1.3				100 C				80 B				42 B				100 C
W1.4				67 B				48 B				33 B				100 C
W2.1	I			0 E				12 B				33 B	_	1.0		0 E
W2.2				100 C				93 B				100 C				54 B
W2.3				100 C				83 B				78 B				73 B
W2.5			. 	66 B				56 B				67 B	_			67 B
W3.1				97 B				89 B				100 C				0 E
W3.2			p	89 B				90 B				100 C				0 E
W3.3		1		89 B				67 B				100 C				0 E
W3.4				55 B			1	48 B				67 B				11 B
W3.5				22 B	-			24 B				67 B				0 E
04.4			_	09 D		_	_	09 D		_	_	100 C				0 E
P1.1				33 B		-	-	90 D				11 B				76 B
P1 3				100 0	-			100 0				100 0	and the second			33 B
P2 1				89 B				89 B				100 0				0 F
P2 2			1	100 C				67 B				100 C				4 B
P2.3				100 C				100 C				100 C				0 E
P3.1	1			78 B				67 B				100 C				0 E
P3.2				100 C				100 C				100 C				0 E
P3.3				89 B				89 B				100 C				0 E

Source: Bryan (2010)

15.10.2021 25

Application 2: Conclusions

- The effect of uncertainty in costs and benefits in the performance and composition of portfolios was significant
- DM should adopt single strategy to reduce the complexity of the decision making
- Framework is directly transferable to other environmental investment problems
- Analysis was used to guide the investments towards the projects that are selected more often in the optimal portfolios

15.10.2021 26

References

- Grushka-Cockayne, Y., De Reyck, B., Degraeve, Z., 2008: An Integrated Decision-Making Approach for Improving European Air Traffic Management, Management Science 54/8, s. 1395-1409.
- Bryan, B. A., 2010: Development and Application of a Model for Robust, Cost-Effective Investment in Natural Capital and Ecosystem Services, Biological Conservation 143/7, s. 1737-1750.

Homework

Task 1: Come up with a multistakeholder decision-making problem where the stakeholders have conflicting objectives and different perspectives. How would you determine the weights for each of the stakeholders so that each of them is satisfied?

Task 2: Discuss briefly about the advantages and limitations of the methods used in application 2.

Send your solution to antti.korkealaakso@aalto.fi

