

Nonadditive portfolio value functions

Suvi Laine Presentation 9 15.10.2021

MS-E2191 Graduate Seminar on Operations Research Fall 2021

Overview

- 1. Running example
- 2. Recap: Additive value functions
- 3. Nonadditive portfolio value functions
- 4. Eliciting nonadditive value functions
- 5. How to solve the optimal portfolio
- 6. Summary

Running example: Ecological conservation site selection (Liesiö (2014))

- Goal: purchase privately-owned forest sites for conservation
- 50 conservation sites (m=50) evaluated based on 5 criteria (n=5)
- Maximize conservation value of a site portfolio with limited budget

Table 1 Criteria and Measurement Scales			Table from Liesiö (2014)		
i	Criterion name	Measurement unit	X_i^0	X_i^*	X_{i}
1	Area	ha	0.5	5	[0.5, 5]
2	Old broad-leaved trees	m³	0	200	[0, 200]
3	Natural water economy	Verbal	None	Excellent	{none, poor, good, excellent}
4	Endangered species	Number	0	100	{0, 1,, 100}
5	Closest natural reserve	km	50	0	[0, 50] 15.10.2021.

Recap: Additive value functions^{1,2}

• Additive value function adds weighted (w_i) and normalized attribute-specific values (v_i) together

$$V(x) = \sum_{i=1}^{n} w_i v_i(x_i)$$

- Preferences are complete and transitive
- Attributes are mutually preferentially independent and difference independent

Recap: Additive-linear portfolio value function^{1,2}

- Portfolio value calculated by summing weighted criterionspecific value functions for each n attributes in a portfolio of mprojects
 - Portfolio decision analysis models often rely on this
 - Criterion-specific project value function v_i
 - Criterion-specific portfolio value function V_i

$$V(x) = \sum_{i=1}^{n} V_i(x_{Ji}),$$

$$V_i(x_{Ji}) = w_i \sum_{j=1}^{m} v_i(x_{ji}), i = 1, ..., n$$

Recap: Assumptions^{1,2}

1. Preferences are project symmetric

 Portfolio performances that are equal up to permutation of rows are equally preferred

2. Each attribute is WDI

 Preference order of changes in attribute levels remains the same for any levels of other attributes

3. Each set of attributes measuring criterion-specific performance is WDI

 Each criterion can be used as a meaningful measure of portfolio performance by examining project performances

Assumptions 1-3 will hold throughout this presentation

Assumption 4?

4. Each set of attributes measuring a single project is DI

- Any change in performance levels of a single project remains equally preferred even if performances of the other projects in the portfolio are varied
- Necessary for additive-linear function
- → Adding a site into the portfolio results in the same value increase independent of the portfolio composition

Assumption 4 – Conservation site (counter)example

- "Adding a site into the portfolio results in the same value increase independent of the portfolio composition"
 - In the conservation site selection, it can be that criterion i=3 "natural water economy" is more important in an empty portfolio than i=4 "endangered species"
 - DM would rather select site (0.5ha, 0m3, exc, 0, 10km) than (0.5ha, 0m3, none, 100, 10km) when the portfolio doesn't contain any other sites
 - If portfolio contains many sites with excellent natural water economy, first option could be valued lower
 - → Assumption 4 discarded

→ Assumption 5

• Each attribute X_{ji} is conditionally DI of other attributes in the same project X_{ji} given a fixed level of the remaining attributes X_{ji}

$$\begin{pmatrix} 100 & 1 & 1 \\ 5 & 5 & 5 \\ 7 & 7 & 7 \end{pmatrix} \leftarrow \begin{pmatrix} 1 & 1 & 1 \\ 5 & 5 & 5 \\ 7 & 7 & 7 \end{pmatrix} \sim \begin{pmatrix} 100 & 10 & 5 \\ 5 & 5 & 5 \\ 7 & 7 & 7 \end{pmatrix} \leftarrow \begin{pmatrix} 1 & 10 & 5 \\ 5 & 5 & 5 \\ 7 & 7 & 7 \end{pmatrix}$$

 Changes in criterion-specific performance of a project remain equally preferred when other project's performances are fixed

→ Nonadditive value function!

Nonadditive value functions: Additivemultilinear value function

Preferences satisfy assumptions 1-3 and 5

$$V(x) = \sum_{i=1}^{n} V_i(x_{Ji})$$

$$V_i(x_{Ji}) = \sum_{J'\subseteq J} w_i(|J'|) \prod_{j\in J'} v_i(x_{ji}) \prod_{j\notin J'} (1 - v_i(x_{ji}))$$

• Portfolio value V(x) is the sum of the criterion-specific value functions V_i (just like with the additive-linear case)

Additive-multilinear value function

$$V(x) = \sum_{i=1}^{n} V_i(x_{Ji})$$

$$V_i(x_{Ji}) = \sum_{J'\subseteq J} w_i(|J'|) \prod_{j\in J'} v_i(x_{ji}) \prod_{j\notin J'} (1 - v_i(x_{ji}))$$

• Each criterion-specific value function is a symmetric strictly-increasing multilinear function of the criterion-specific project values $v_i(x_{1i}), \dots, v_i(x_{mi})$

Additive-multilinear value function

$$V(x) = \sum_{i=1}^{n} V_i(x_{Ji})$$

$$V_i(x_{Ji}) = \sum_{J'\subseteq J} w_i(|J'|) \prod_{j \in J'} v_i(x_{ji}) \prod_{j \notin J'} (1 - v_i(x_{ji}))$$

- Strictly increasing weighting function $w_i(1), \dots, w_i(m), w_i(0) = 0$
 - $w_i(k)$ corresponds to the criterion-specific value of a portfolio that has k projects with indices $J' \subseteq J$ on the most preferred level, remaining m-k projects on the least preferred level
- Whiteboard example with portfolio $J = \{A, B\}$

Numerical example – criterion-specific values

Project	Criterion-specific project values $v_i(x_j)$
Α	0.4
В	0.6

Calculate $V_1(x_{J1})$ with $J_1 = \{A\}$ and $J_2 = \{A, B\}$ with $w_1(1) = 0.3$ and $w_1(2) = 0.7$

•
$$V_1(x_{J_1}) = w_1(1)v_1(x_{A1}) = 0.4 * 0.3 = 0.12$$

•
$$V_1(x_{J_2}) = w_1(1)v_1(x_{A1})(1-v_1(x_{B1})) + w_1(1)v_1(x_{B1})(1-v_1(x_{A1})) + w_1(2)v_1(x_{A1})v_1(x_{B1}) = 0.3 * 0.4 * (1-0.6) + 0.3 * 0.6 * (1-0.4) + 0.7 * 0.4 * 0.6 = 0.324$$

Some notation

$$\langle k_1, y; k_2, y' \rangle = (\underbrace{y, \dots, y}_{k_1}, \underbrace{y', \dots, y'}_{k_2}, \underbrace{x_i^0, \dots, x_i^0}_{m-k_1-k_2})^T \in X_{Ji}.$$

- Portfolio of m projects with k_1 projects at performance y and k_2 projects at performance level y'
- By definition, $w_i(k) = V_i(\langle k, x^* \rangle)$

Eliciting values & weights

- v_i can be elicited with standard techniques
- Specification of V_i requires defining the weighting function values $w_i(1), \dots, w_i(m)$ and $w_i(k) = V_i(\langle k, x^* \rangle)$
- Weights with linear constraints:
 - Ask DM to adjust level y until portfolios with $\langle k, x^* \rangle$ and $\langle k 1, x^*; 2, y \rangle$ are equally preferred
 - Repeat for each $k \in \{1, ..., m-1\}$
 - Get m-1 linear equations for m variables \rightarrow determines the weighting function up to a positive constant

Eliciting weights – linear constraints method¹

• "Define volume y of old broad-leaved trees between $\left[x^0, x^*\right] = \left[0, 200\right]$ such that having nine sites with 200m³ and two sites with y m³ of broad-leaved trees is equally preferred to having ten sites with 200m³ of broad-leaved trees"

$$V_{i}(\langle k, x^{*} \rangle) = V_{i}(\langle k - 1, x^{*}; 2, y \rangle)$$

$$\Leftrightarrow w_{i}(k) = w_{i}(k - 1)(1 - v_{i}(y))^{2}$$

$$+ 2w_{i}(k)(1 - v_{i}(y))v_{i}(y)$$

$$+ w_{i}(k + 1)v_{i}(y)^{2}$$

$$\Leftrightarrow w_{i}(k + 1) - w_{i}(k) = (\frac{1 - v_{i}(y)}{v_{i}(y)})^{2}(w_{i}(k) - w_{i}(k - 1))$$

Eliciting weights – DSS method¹

Difference standard sequence

- Define unit stimulus $w_i(k_0)$, example: change from a portfolio with no water economy (x^0) to a portfolio of $k_0 = 10$ sites with excellent water economy (x^*)
- Ask DM to define the number of sites k_1 s.t. the change from k_0 (=10) to k_1 sites with excellent natural water economy is equally preferred to the change from zero to k_0 (=10) such sites.
- We get a sequence of portfolio performances where each change $\langle k_{l}, exc. \rangle \leftarrow \langle k_{l-1}, exc. \rangle$ is equally preferred

Eliciting weights – DSS¹

• Equality then used to define $_{\text{Figure 3}}$ weighting function value for each k_{l}

Large Dots Correspond to the Weighting Function Values Obtained from the Difference Standard Sequence $k_i = 0$, 10, 13, 15, 18, 23, 50 and Small Dots to the Interpolated Values

$$V_3(\langle k_l, exc \rangle) - V_3(\langle k_{l-1}, exc \rangle)$$

$$= V_3(k_0, exc) - V_3(0, exc)$$

$$\Leftrightarrow w_3(k_l) - w_3(k_{l-1}) = w_3(k_0)$$

- Remaining values with linear interpolation
 - Absolute weighting function value can be fixed with tradeoff techniques, swing weighting etc

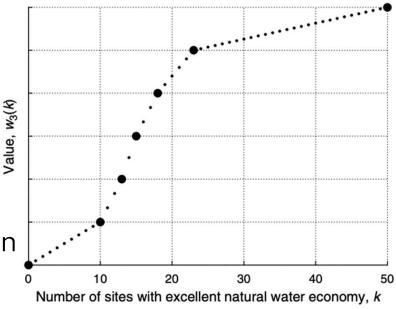
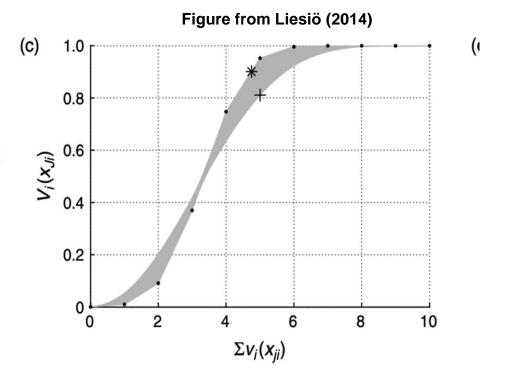


Figure from Liesiö (2014)

15.10.2021

Comparison: Sum of project scores vs. Additive-multilinear

- Additive-multilinear criterionspecific V_i and sum of criterion specific project values with m = 10
- Dots show weighting function values from 1,...,10
- Gray area is the set of points obtained when portfolio performance is varied through its entire domain



Insert presentation dat

1.
$$\langle 5, x^* \rangle$$
, $w_i(5) = 0.95$: sum of project scores = 5

•
$$V_i(\langle 5, x^* \rangle) = 0.01 * 1 * (1-1)^4 + \dots + 0.95 * 1 = 0.95$$

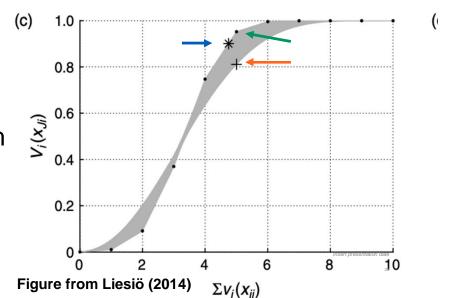
2.
$$\langle 10, y \rangle$$
, $v_i(y) = 0.5$: sum of project scores = 5 (+)

•
$$V_i(\langle \mathbf{10}, y \rangle) = \cdots = \mathbf{0.81}$$

3.
$$\langle \mathbf{4}, x^*; \mathbf{1}, y' \rangle$$
, $v_i(y') = 0.75$, $w_i(\mathbf{4}) \approx \mathbf{0}.75$: sum of project scores = 4.75

•
$$V_i(\langle 4, x^*; 1, y' \rangle) = ... + 0.75 * 1^4 * (1 - 0.75) + 0.95 * 1^4 * 0.75 \approx 0.90$$
(*)

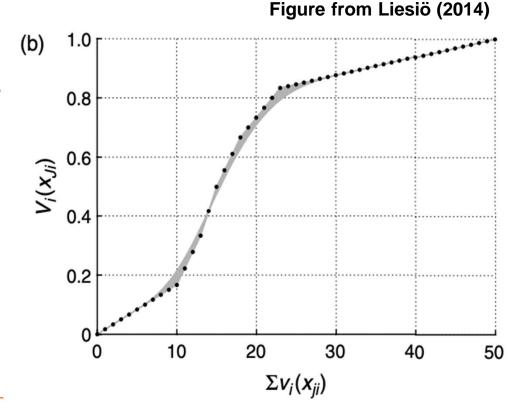
Additive-multilinear value function isn't always increasing in the sum of scores and can't be accurately represented with a nonlinear function



MS-E2191 Gradua

Sum of project scores vs. Additivemultilinear

- Linear weighting function results in a linear portfolio value function
- In some cases, sum of project scores can give a good approximation of V_i



Insert presentation da

Additive-multilinear portfolio value function: Summary

- Satisfies assumptions 1-3, 5
- More general case than additive-linear
 - Additive-linear can sometimes be a good approximation
 - Shares many steps with applying additive-linear portfolio models (defining the problem and project scoring), but value of adding a project into the portfolio doesn't have to be constant
- Number of parameters increases linearly in number of attributes

The multilinear portfolio value function¹

If preferences only satisfy assumptions 1-3, general form:

$$V(x) = \sum_{I' \subseteq I} \lambda(I') \prod_{i \in I'} \frac{V_i(x_{Ji})}{\lambda(\{i\})} \prod_{i \notin I'} \left(1 - \frac{V_i(x_{Ji})}{\lambda(\{i\})}\right).$$

- V_i can be elicited as described previously, then the values of λ can be obtained by examining preferences over the performances of a single project
- Elicitation becomes exponentially more computationally expensive in the number of criteria

Optimization models for maximising portfolio value¹

- Optimal portfolio problem can be formulated as a nonlinear integer programming problem (maximize portfolio value)
- m < 100 & Additive-multilinear V:
 - Enumeration algorithm (depth-first binary tree search) presented (see Liesiö 2014)
 - Number of solutions to enumerate reduced by testing if a specific branch will only contain suboptimal or infeasible solutions
 - Conservation site example with m=50 took less than 2 seconds to solve on a standard computer

Optimization models for maximising portfolio value^{1,3}

- Larger problems: Approximate with a MILP model
 - First choose a piecewise linear mapping \tilde{V}_i : $[0, m] \rightarrow [0,1]$ for each criterion $i \in I \rightarrow Approximate$ optimization problem
 - This can be formulated as a MILP problem and solved
 - Conservation site took less than a second to solve

Optimization models for maximising portfolio value^{1,3} $\max_{\max} \{\sum_{i=1}^{n} \int_{\theta_{i}^{i}}^{l_{i}} \widetilde{V}_{i}(\mathbf{x}_{i}^{i})\}$

- Approximate MILP formulation
 - \tilde{V}_i linear piecewise approximation of V_i
 - θ , ψ are nonnegative scalars for linearisation
 - $Az \leq B$ is budget constraint
 - $z_j = 1$ if project j is chosen
 - χ_d^i points in interval [0,m] for approximation \tilde{V}_i

$$\begin{split} & \sum_{i=1}^{N} \sum_{d=1}^{l_{i}} \theta_{d}^{i} \tilde{V}_{i}(\chi_{d}^{i}) \Big\} \\ & Az \leq B, \\ & \sum_{j=1}^{n} [z_{j} v_{i}(x_{ji}) + (1 - z_{j}) v_{i}(\underline{x}_{i})] = \sum_{d=1}^{l_{i}} \theta_{d}^{i} \chi_{d}^{i} \ \forall i \in I, \\ & \sum_{d=1}^{l_{i}} \theta_{d}^{i} = 1 \quad \forall i \in I, \\ & \sum_{d=1}^{l_{i}-1} \psi_{d}^{i} = 1 \quad \forall i \in I, \\ & \theta_{1}^{i} \leq \psi_{1}^{i} \quad \forall i \in I, \\ & \theta_{d}^{i} \leq \psi_{d-1}^{i} + \psi_{d}^{i} \quad \forall d \in \{2, \dots, l_{i}-1\}, i \in I, \\ & \theta_{l_{i}}^{i} \leq \psi_{l_{i}-1}^{i} \quad \forall i \in I, \\ & \theta^{i} \in [0,1]^{l_{i}}, \quad \psi^{i} \in \{0,1\}^{l_{i}-1}, \quad \forall i \in I. \end{split}$$

26

Summary: Conservation site

- Additive-multilinear portfolio value function used
 - Assumptions can be relaxed, project synergy allowed, more general than additive value functions
- Weights were elicited with linear constraints and DSS
- Absolute values V_1, \dots, V_5 fixed by assessing tradeoffs between criteria pairs
- Optimal portfolio solved with the enumeration algorithm and also with the approximate MILP model for comparison
 - Approximate MILP was faster

References

- 1. Liesiö, J., 2014: Measurable Multiattribute Value Functions for Portfolio Decision Analysis, Decision Analysis 11/1, s. 1-20.
- 2. Golabi, K., Kirkwood, C. W., Sicherman, A., 1981: Selecting a Portfolio of Solar Energy Projects Using Multiattribute Preference Theory, Management Science 27/2, s. 174-189.
- Bertsimas D, Tsitsiklis JN (1997) Introduction to Linear Optimization, Athena Scientific Series in Optimization and Neural Computation, Vol. 6 (Athena Scientific, Belmont, MA).

Homework

- 1. In what situation should you use the additivemultilinear portfolio value function instead of the additive-linear one?
- 2. Calculate criterion-specific $V_1(x_{J1})$ for portfolios {A}, {B,C}, {A, E}, {A,B,C} with given project values
 - a) With additive-linear $V_1(x_{I1})$ and $w_1 = 0.1$
 - b) With additive-multilinear $V_1(x_{J1})$ and $w_1(1) = 0.1$, $w_1(2) = 0.5$, $w_1(3) = 0.55$
 - c) What differences do you see?

DL 22.10. 09:00 Send your answer to suvi.laine@aalto.fi

Project	$v_1(x_{j1})$	
A	0.3	
В	0.8	
С	0.5	
D	1	
E	1	

