ELEC-C9610 Basics in Electronics

Calculation assignment 1. Deadline 14:00, September 21st, 2021

1.1 Explain what the Kirchhoff's laws define. Apply the laws to a node "A", loop "B" of the following circuit, and formulate two equations corresponding to the Kirchhoff's laws.

1.2 You have a box containing an unlimited number of $10 \mathrm{k} \Omega$ resistors. Show how to connect some of these together to construct equivalent resistances with the following values:
a) $20 \mathrm{k} \Omega$
b) $25 \mathrm{k} \Omega$
c) $6.667 \mathrm{k} \Omega$
d) $3.33 \mathrm{k} \Omega$

A battery, with an open-circuit voltage E_{a} and internal resistance R_{s}, is charged by a voltage source E through resistance R as shown in the figure. By using Kirchoff's laws, Ohm's law and the expression of power seen in the lecture, determine R so that the power flowing into the voltage source of the battery is $P_{E_{\mathrm{a}}}$.

$$
\begin{aligned}
E_{\mathrm{a}} & =12 \mathrm{~V} \quad R_{\mathrm{s}}=0.1 \Omega \quad E=20 \mathrm{~V} \\
P_{E_{\mathrm{a}}} & =40 \mathrm{~W}
\end{aligned}
$$

