ELEC-C9610 Basics in Electronics

Calculation assignment 3.Deadline 14:00, October 5th, 2021

3.2

$R_{1}=3 \Omega \quad R_{2}=6 \Omega \quad R_{3}=2 \Omega R_{4}=8 \Omega$ $E=9 \mathrm{~V} \quad J=5 \mathrm{~A}$.

Find the voltage U_{2} over the resistance R_{2} using the node voltage method. Formulate a linear matrix equation heuristically (see lecture slides) for voltages U_{A} and U_{B}. This is the same circuit as exercise 3.1. Do you get a consistent voltage value of $U_{2}=I_{2} R_{2}$ which was derived in exercise 3.1?

$R_{1}=3 \Omega \quad R_{2}=6 \Omega \quad R_{3}=2 \Omega R_{4}=8 \Omega$ $E=9 \mathrm{~V} \quad J=5 \mathrm{~A}$.

Find the current I_{2} over the resistance R_{2} using the mesh current method. Formulate a linear matrix equation heuristically (see lecture slides) for loop currents I_{A} and I_{B}.

$$
\begin{aligned}
J & =1 \mathrm{~A} \quad g=20 \mathrm{mS} \quad R_{1}=10 \Omega \\
R_{2} & =30 \Omega .
\end{aligned}
$$

In this exercise, we study the treatment of dependent sources in the circuit analysis. Use the node voltage method to find the voltage U_{0}. Formulate a linear matrix equation heuristically for voltages U_{A} and U_{B}.

