ELEC-C9610 Basics in Electronics

Calculation assignment 4. Deadline 14:00, October 12th, 2021

4.1 The following diagrams show an operational amplifier (opamp) circuit (left) and its equivalent representation (right). Please name three important assumptions we make when we consider the opamp **ideal** (you can take help from the equivalent representation).

[Operational amplifier]

For the circuit on the left side, relate the output voltage V_{out} with V_a and V_b . According to the relation, which of the following is the manipulation that the circuit realizes?

- a) Multiplying input voltages $V_{\rm a}$ and $V_{\rm b}$.
- b) Adding input voltages $V_{\rm a}$ and $V_{\rm b}$.
- c) Subtracting input voltage $V_{\rm b}$ from $V_{\rm a}$.
- d) Dividing the input voltage V_a by V_b .

Let us assume ideal operational amplifiers with $V_{cc}^{+} = \infty$ V and $V_{cc}^{-} = -\infty$ V, i.e., the amplifiers operate in a linear region.

- b) Find V_{out} with the following parameters of the circuit. $R_1 = 10 \text{ k}\Omega, R_2 = 20 \text{ k}\Omega, R_3 = 200 \text{ k}\Omega,$ $V_a = 0.2 \text{ V}, V_b = 0.4 \text{ V}, V_{cc}^+ = 15 \text{ V},^ V_{cc} = -12 \text{ V}.$
- c) If $V_b = 0.4$ V, what is the condition of V_a so that the amplifier operates in a saturation region?
- d) If $V_a = 0.2$ V, what is the condition of V_b so that the amplifier operates in a linear region?

