CHEM-E4101

Lab Work in Inorganic Chemistry, 5 cr

Eeva-Leena Rautama

Briefly on the course

- First time in Period I
 - CHEM-E4130 Chemistry of the Elements is the corresponding theory course and CHEM-E4120 Quantitative Instrumental Analysis contains supporting information as well
- Three lab works, max. three persons in a group
- Materials: mainly provided by teacher(s)
- Must do:
 - presence in all necessary lab sessions (five per student),
 - submission of individual digi-exercises (from two works)
 - <u>one full scientific report</u> in English (from one work)
- Grade: fail/1-5 (exercises and report)

Learning outcomes

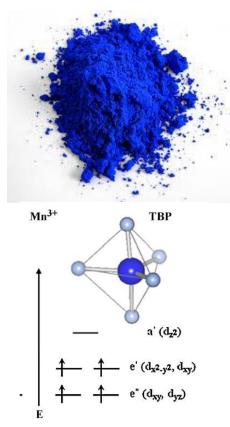
After completing the course, you will

- gain a deepened understanding of the chemistry of elements
- familiarize yourself with basic concepts of systematic inorganic materials design
- perform hands-on measurements with laboratory/research instruments
- demonstrate advanced data interpretation and reporting

Workload

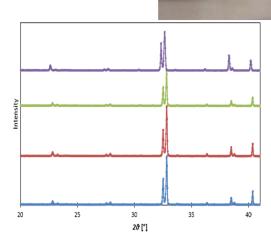
5 cr = 135 h

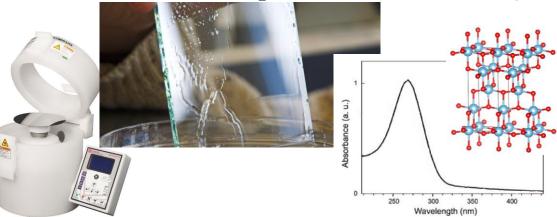
Contact teaching at the lab: ~25 h


Preparation for the lab: 25 h (5 h + 10 h + 10 h), includes processing time. Includes exercises and work instructions Post-lab preparation of exercises: 20 h (10 h + 10 h)

Lab report: 65 h (data analysis and summary session included)

The laboratory works


Ultramarine pigment Y(In,Mn)O₃


Aalto University School of Chemical Engineering

High-temperature superconductor YBa₂Cu₃O_{7-δ}

Photoactive TiO₂ surfaces by spin-coating

Activities in the lab

Synthesis methods: Solid state and sol-gel precursors, hightemperature synthesis

Analyses: Powder X-ray diffraction (XRD), UV-Vis spectrometry for solid materials, X-ray fluorescence (XRF), thermogravimetry (TG), RedOx titrations under inert conditions

Handling of gases and cold liquids

Grading

- Elements: Pre- and postwork from all three lab topics: 100 points
- Purpose: to familiarize you into the topic and summarize the theoretical essence behind the practicals. The exercises are mostly based on the previous and ongoing studies
- Work #1: YBa₂Cu₃O₇ ("YBCO") superconductor: most extensive => lab report. Practice on scientific writing and reporting (in English), idea is to present the work done similar to a journal paper.
 - Self-made graphs, i.e. "figures"
 - Informative content: presenting analysed data, data comparison
 - Emphasis on the essential content, not in "reporting"

Aalto University 45 % of the grade (prework 5 %, compulsory) = 50 points

See the rubric (evaluation matrix) from the course material folder

Grading –cont.

- Works #2 and #3: 25 % each (pre- and postwork total).
 Variations in questions
- Work #2: Synthesis and characterization of the ultramarine pigment Y(In_{0.9}Mn_{0.1})O₃
 - solid solution (substitution), reasons behind the colors in solid state
 - Exercises 25+5 points (1 bonus question)
- Work #3: phase-controlled TiO₂-film deposition
 - Organometallic precursors for inorganic synthesis
 - Polymorphism and thin-film deposition
 - Exercises 25 points

