CS-C3240 - Machine Learning

Model Regularization

Alexander Jung

29.1.2022

What I want to teach you today:

- recap of model training, validation and selection
- basic idea of regularization
- basic idea of data augmentation
- equivalence between regularization and data aug.

Empirical Risk Minimization

learn hypothesis out of model that incurs minimum loss when predicting labels of datapoints based on their features

ERM is only Approximation!

Model Validation and Selection

Learn and Validate!

•divide datapoints into two subsets

training and validation set

•train.set: used to learn $\hat{h} \in \mathcal{H}$

•val.set: used to probe \hat{h} outside trainset

Split into Train and Val Set in Python

Basic Idea of Model Selection

- choose model with smallest validation error!
 - training validation
 - error error

model 1 degree 1 polyn. model 2: degree 3 polyn.

Use Different Loss for Train and Val

- we can use different loss for training and validation
- this enables the comparison of different ML methods
- logistic regression uses log loss to learn hypothesis h1(x)
- SVM uses hinge loss to learn hypothesis h2(x)
- compare h1, h2 by their average 0/1 loss ("accuracy") on val. set

Data and Model Size

eff. dimension d

ratio d/m

Effective Dim. Linear Maps

- •linear map can perfectly fit m data points with n features, as soon as $n \ge m$ [Ch 6.1, mlbook.cs.aalto.fi]
- eff.dim. of linear maps = nr. of features

• d = n

Effective Dim. Polyn. Reg.

perfectly fit (almost) any m data points using polynomials of max degree r as soon as

$r+1 \ge m$

-> d = r+1 (effective dim. of polyn. regression equals the max. polyn. degree plus one!)

Data Hungry ML Methods

- millions of features for datapoints (e.g. megapixel image)
- eff.dim. d of linear maps is also millions
- eff.dim d of deep nets is millions ... billions
- can perfectly fit any set of 100000s (!) of datapoints
- training error will be zero (overfitting!)

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

Data Augmentation

rotated cat image is still cat image

flipped cat image is still cat image

shifted cat image is still cat image

how to bring d/m below critical value?

- increase m by using more training data
- decrease d by using smaller hypothesis space

replace original ERM

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

with ERM on smaller $\widehat{\mathcal{H}} \subset \mathcal{H}$

$$\min_{h\in\widehat{\mathcal{H}}} \frac{1}{m} \sum_{i=1}^{m} L((x^{(i)}, y^{(i)}), h)$$

Prune Hypospace by Early Stopping

Soft Model Pruning via Regularization

Regularized ERM

learn hypothesis h out of model (hypospace) \mathcal{H} by minimizing

Regularized Linear Regression

- squared error loss
- linear hypothesis map $h(x) = w^T x = w_1 x_1 + \dots + w_n x_n$

$$\frac{1}{m}\sum_{i=1}^{m} \left(y^{(i)} - w^T x^{(i)}\right)^2 + \lambda \mathcal{R}(w)$$

- ridge regression uses $\mathcal{R}(w) = ||w||_2^2 = w_1^2 + \dots + w_n^2$
- Lasso uses $\mathcal{R}(w) = ||w||_1 = |w_1| + \dots + |w_n|$

Regularization = Implicit Pruning!

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h) + \lambda \mathcal{R}(h)$$

equivalent to

$$\min_{h \in \mathcal{H}^{(\lambda)}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h)$$

with pruned model $\mathcal{H}^{(\lambda)} \subset \mathcal{H}$

Regularization = "Soft" Model Selection

Regularization does implicit Data Augmentation

augment with (infinitely many) realizations of RV! label y original datapoint augmented = + "noise"

feature x 37

Regularization =Implicit Data Aug.

To sum up,

- large ratio d/m leads to overfitting
- reduce d by using smaller model ("pruning")
- increase m by using more data points
- regularization is a soft model pruning
- regularization does implicit data augmentation

Questions ?

Transfer Learning via Regularization

- Problem I: classify image as "shows border collie" vs. "not"
- Problem II: classify image as "shows a dog" vs. "not"
- ML Problem I is our main interest
- ullet only little training data $\mathcal{D}^{(1)}$ for Problem I
- much more labeled data $\mathcal{D}^{(2)}$ for Problem II
- pre-train a hypothesis on $\mathcal{D}^{(2)}$, fine-tune on $\mathcal{D}^{(1)}$

Multi-Task Learning via Regularization

- Problem I: classify image as "shows border colly" vs. "not"
- Problem II: classify image as "shows husky" vs. "not"
- ${}^{\bullet}\, {\rm training}\, {\rm data}\, {\cal D}^{(1)}$ for Problem I and ${\cal D}^{(2)}$ for Problem II
- jointly learn hypothesis $h^{(1)}$ on $\mathcal{D}^{(1)}$ and $h^{(2)}$ on $\mathcal{D}^{(2)}$
- require $h^{(1)}$ to be "similar" to $h^{(2)}$

training error of
$$h^{(1)}$$

min
 $\mathcal{E}(h^{(1)}|\mathcal{D}^{(1)}) + \mathcal{E}(h^{(2)}|\mathcal{D}^{(2)})$
 $+\lambda d(h^{(1)}, h^{(2)})$
 $n^{(1)}, h^{(2)}$
"distance" between $h^{(1)}$ and $h^{(2)}$

Semi-Supervised Learning via Regularization

- classify image as "shows border colly" vs. "not"
- ullet small labeled dataset $\mathcal{D}^{(1)}$
- massive image database $\mathcal{D}^{(2)}$ with unlabeled images
- train hypothesis h(.) on $\mathcal{D}^{(1)}$ with following structure:

 $\mathcal{D}^{(1)}$ learn linear classifier f(.) learn feature map g(.)

$\mathcal{D}^{(2)}$ 51

$$\min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}((x^{(i)}, y^{(i)}), h) + \lambda \mathcal{E}(g | \mathcal{D}^{(2)})$$

use training error
to fine tune f(.) learn feature map g(.)
using large unlabeled

database $\mathcal{D}^{(2)}$