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Learning goals

Logistic Regresion
Logistic Loss

Support Vector Machines
Hinge loss
Maximum margin principle

The perceptron algorithm
Multiclass and multilabel problems
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How do we find proper parameters
w0 and w1 ?

Hypothesis: h(x) = w0 + w1x
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Recap: linear regression

Hypothesis: h(x) = w0 + w1x

minimize L[(X ,Y),h(·)] =
1

2n

n∑
i=1

(h(xi)− yi)
2

weight update (step t → t + 1): w t+1
1 = w t

1 − δ ·
∂L[(X ,Y),h(·)]

∂w1

Loss function:
estimates quality of
current solution;

sometimes called
error function or
cost function.
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Additive constant
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Recap: linear regression

Hypothesis: h(x) = w0 + w1x

minimize L[(X ,Y),h(·)] =
1

2n

n∑
i=1

(h(xi)− yi)
2

weight update (step t → t + 1): w t+1
1 = w t

1 − δ ·
∂L[(X ,Y),h(·)]

∂w1

.

Iterative
approximation
of w1
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Outline

Recap: linear regression

Logistic regression

The Perceptron algorithm

Support Vector Machines

Multiclass classification
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Logistic regression
Nominal classes

Classes might be nominal in real-world problems

Weather Sunny, rainy
Medical positive diagnosis, negative diagnosis

Localisation indoor, outdoor
In such case, classification is binary: y ∈ {0,1}

Linear regression: h(x) can be smaller than 0 or greater than 1
Logistic regression: 0 ≤ h(x) ≤ 1
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Logistic regression
Loss function

Linear regression
h(x) = −→w T x

Logistic regression
h(x) =

1
1+e−

−→w T x

y =

{
1 if h(x) ≥ 0.5
0 else
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Logistic regression
Loss function

y =

{
1 if h(x) ≥ 0.5
0 else

L[(X ,Y),h(·)] =
{
− log(h(x)) if y = 1
− log(1− h(x)) else
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Support Vector Machines
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The perceptron algorithm

Binary classification (−→y ∈ {−1,1}n) with −→xi ∈ X , i ∈ {1, . . . ,n}.

We define a nonlinear hypothesis function as:

h(−→w T−→x ) =

{
+1, −→w T−→x ≥ 0
−1, −→w T−→x < 0.
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The perceptron algorithm

Let Dt ⊆ X describe the set of all misclassified xi at step t and the loss function

L[−→xi ,
−→y ,−→w ,h(·)] =

{
−−→w T−→xi yi ;

−→xi ∈ D
0 ;else

L[−→xi ,
−→y ,−→w ,h(·)] is piecewise linear:

linear in regions of the feature space where xi are misclassfied
0 in regions where it is classified correctly

Apply stochastic gradient descent to this loss function:

−→w t+1 =
−→w t −

{
δ ∂L[−→xi ,

−→y ,−→w ,h(·)]
∂
−→w ; xi ∈ D

0 ;else

=
−→w t +

{
δ
−→xi yi ; xi ∈ D

0 ;else
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The perceptron algorithm
Interpretation of the learning function

−→w t+1 =
−→w t +

{
δ
−→xi yi xi ∈ D

0 else

for each xi :
correct classification: weight vector remains unchanged
incorrect classification:

yi = 1 : add vector −→xi

yi = −1 : subtract vector −→xi
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The perceptron algorithm

Perceptron convergence theorem
IFF the training data is linearly separable, then the perceptron learning
algorithm will always find an exact solution in finite number of steps.

→ Number of steps required might be large
→ Until convergence, not possible to distinguish separable problem

from non-separable
→ For non-separable data sets the algorithm will never converge
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Recap: linear regression

Logistic regression

The Perceptron algorithm

Support Vector Machines

Multiclass classification



Stephan Sigg
January 17, 2022

20 / 38

Support vector machines (SVM)
Large margin classifier
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Support vector machines (SVM)
Large margin classifier

The goal for support vector machines is to find a linear and separating
hyperplane with the largest margin to the outer points in all sets

If needed, map all points into a higher dimensional space until such a
plane exists
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Support vector machines (SVM)
Contribution of a single sample to the overall loss:
Logistic regression

L[(X ,Y),h(·)] = −y · log
(

1− 1
1 + e−

−→w T x

)
− (1− y) · log 1

1 + e−
−→w T x

SVM

L[(X ,Y),h(·)] = −y · costy=1(
−→w T x) +−(1− y) · costy=0(

−→w T x)
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Support vector machines (SVM)
Cost function

Logistic regression

min
W

1
m

[∑m
i=1 yi

(
− log

(
1− 1

1+e−
−→w T xi

))
+ (1− yi)

(
− log 1

1+e−
−→w T xi

)]
+ λ

2m

∑n
j=1 w2

j

SVM

min
W

1
λ′

∑m
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+ 1

2

∑n
j=1 w2

j

. λ has a similar effect on the overall term as 1
λ′
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Support vector machines (SVM)
SVM hypothesis

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j
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Support vector machines (SVM)
SVM hypothesis

−→w T x
{
≥ 0
< 0 sufficient

−→w T x
{
≥ 1
≤ −1 ⇒ confidence

Elastic decision boundary
small λ′ stricter boundary at the cost

of smaller margin
large λ′ tolerates outliers

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j
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{
≥ 1
≤ −1 ⇒ confidence

Outliers: Elastic decision boundary
small λ′ stricter boundary at the cost

of smaller margin
large λ′ tolerates outliers

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j



Stephan Sigg
January 17, 2022

28 / 38

Support vector machines (SVM)
SVM hypothesis

−→w T x
{
≥ 0
< 0 sufficient

−→w T x
{
≥ 1
≤ −1 ⇒ confidence

Outliers: Elastic decision boundary
small λ′ stricter boundary at the cost

of smaller margin
large λ′ tolerates outliers

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j



Stephan Sigg
January 17, 2022

29 / 38

Support vector machines (SVM)
SVM hypothesis

−→w T x
{
≥ 0
< 0 sufficient

−→w T x
{
≥ 1
≤ −1 ⇒ confidence

Outliers: Elastic decision boundary
small λ′ stricter boundary at the cost

of smaller margin
large λ′ tolerates outliers

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j



Stephan Sigg
January 17, 2022

30 / 38

Support vector machines (SVM)
SVM hypothesis

−→w T x
{
≥ 0
< 0 sufficient

−→w T x
{
≥ 1
≤ −1 ⇒ confidence

Outliers: Elastic decision boundary
small λ′ stricter boundary at the cost

of smaller margin
large λ′ tolerates outliers

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j



Stephan Sigg
January 17, 2022

31 / 38

Support vector machines (SVM)
Large margin classifier

min
W

1
λ′

m∑
i=1

[
yicosty=1(

−→w T xi) + (1− yi)costy=0(
−→w T xi)

]
+

1
2

n∑
j=1

w2
j

Rewrite the SVM optimisation problem as

min
W

1
2

∑n
j=1 w2

j

s.t . −→w T xi ≥ 1 if yi = 1
−→w T xi ≤ −1 if yi = 0
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Support vector machines (SVM)
Large margin classifier

min
W

1
2

∑n
j=1 w2

j = 1
2

(√
w2

1 + · · ·+ w2
n

)2

=
1
2
||−→w ||2

s.t . −→w T xi ≥ 1 if yi = 1 → ||−→w || · pi ≥ 1
−→w T xi ≤ −1 if yi = 0 → ||−→w || · pi ≤ −1
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−→w ||2 and ||−→w || · pi ≥ 1

necessitate larger pi
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Outline

Recap: linear regression

Logistic regression

The Perceptron algorithm

Support Vector Machines

Multiclass classification
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Multiclass classification

Multi-class: One-versus all:

Train classifiers for each class
to obtain probability that x
belongs to class i :

hi(x) = P(y = i |−→x ,
−→
W )

then, choose

maxi (hi(x))
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Multiclass classification

Multiple classes
Can we use logistic regression for
problems with more than two
classes?
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Application to several classes iteratively: One-versus-all
belongs to class 1 or not?

belongs to class 2 or not?

...
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Questions?
Stephan Sigg

stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi
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