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Learning goals

@ Logistic Regresion
@ Logistic Loss
@ Support Vector Machines

@ Hinge loss
@ Maximum margin principle

@ The perceptron algorithm
@ Multiclass and multilabel problems
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Recap: linear regression
Logistic regression

The Perceptron algorithm
Support Vector Machines
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Recap: linear regression
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Recap: linear regression
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Recap: linear regression @
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Recap: linear regression
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Recap: linear regression @

y1

A

® o @ What do we try to find with linear
- regression?

° o_ o :

o o o ° @ How do we find proper parameters
7 ° Wo and wy ?
°

X:
Hypothesis: h(x) = wp + wyx
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Recap: linear regression

yA o

@ What do we try to find with linear
° regression?

® @ How do we find proper parameters
wo and wy ?

>
>
X A Loss Function
Hypothesis: h(x) = wp + wyx abel o) 9 = h(x)
///
CEH] _—
//
Aanl /e measure of prediction error obtained
— when using hypothesis h to predict label y’ of datapoint
with feature x”
T feature
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Recap: linear regression

The Squared Error Loss
L= -y)*

(RS N

predicted label § = h(x)

The Absolute Error Loss
‘ L=19 -yl
X:
;, predicted label y = h(x)
Hypothesis: h(x) = wp + wyx
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Iﬁecap: linear regression

' /Tc/‘
100 J
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x>

Hypothesis: h(x) = wp + wyx

minimize L[(X,Y), h(-)]

weight update (step ¢ — -+ 1): wit!

Loss function:
estimates quality of
current solution;

sometimes called
error function or
cost function.

%7 Z (h(x) — yi)
wt . U, ), hO)]
8W1
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Iﬁecap: linear reqrﬁssion

R

0
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x>

Hypothesis: h(x) = wp + wyx
minimize L[(X,)), h(-)]

weight update (step ¢ — -+ 1): wit!

i

Loss function:
estimates quality of
current solution;

sometimes called
error function or
cost function.

1 n
on Z (h(x) — yi)

wl —

4

ALY, V), h()

8W1

tephan Sigg
January 17, 2022
7138



Recap: linear regression

yll

\ L

Additive constant
wp ignored in thi
plot.

Hypothesis: h(x) = wo + wyx
minimize L[(X,)), h(:)] =

weight update (step ¢ — ¢+ 1): wit!' = wf ¢

1 n

i=1

e

5= (h(x) - y)?
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Recap: linear regression |
A A A . lterative
Y T 6 V L % approximation
[ ‘w \

ot 5

x> % > . o
Hypothesis: h(x) = wp + wyx
minimize L[(X,Y), h(-)] = Z (h(x;) —
i:1
weight update (step t — 4 1): wit! = w{ 5. 3L[(X8$) ,h(:)]
)
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Recap: linear regression
Logistic regression

The Perceptron algorithm
Support Vector Machines

Multiclass classification
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Logistic regression

Nominal classes

Classes might be nominal in real-world problems
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m =< - ™~ cat Loss Functions for Binary Classification
[} u | | n - label y = “cat”
- \
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mmmm) h(x) = “dog”
features x = pixels Loss = 100
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Logistic regression

Nominal classes

Classes might be nominal in real-world problems

A

X c o 0 °®

Loss Functions for Binary Classification
label y = “cat”
E/Lf ) h(x)= “dog”
features x = pixels Loss = 100
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Logistic regression
Nominal classes
Classes might be nominal in real-world problems

Weather Sunny, rainy
Medical positive diagnosis, negative diagnosis
Localisation indoor, outdoor

Loss Functions for Binary Classification
label y = “cat”
E/Lf ) h(x)= “dog”
features x = pixels Loss = 100
=
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Logistic regression
Nominal classes
Classes might be nominal in real-world problems

Weather Sunny, rainy

Medical positive diagnosis, negative diagnosis
Localisation indoor, outdoor
In such case, classification is binary: y € {0,1}

Loss Functions for Binary Classification
label y = “cat”
E/Lf ) h(x)= “dog”
features x = pixels Loss = 100
=
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Logistic regression
Nominal classes
Classes might be nominal in real-world problems

Weather Sunny, rainy
Medical positive diagnosis, negative diagnosis
Localisation indoor, outdoor

In such case, classification is binary: y € {0,1}
Linear regression: h(x) can be smaller than 0 or greater than 1

Loss Functions for Binary Classification

label y = “cat”

@ mm—) h(x) = “dog”

features x = pixels Loss = 100

D
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Logistic regression

Nominal classes

Classes might be nominal in real-world problems

Weather Sunny, rainy

Medical positive diagnosis, negative diagnosis

Localisation indoor, outdoor

In such case, classification is binary: y € {0,1}

Linear regression: h(x) can be smaller than 0 or greater than 1

Logistic regression: 0 < h(x) < 1

Loss Functions for Binary Classification

label y = “cat”

@ mm—) h(x) = “dog”

features x = pixels Loss = 100
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Logistic regression

Nominal classes
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Logistic regression

Nominal classes
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Logistic regression

Loss function

=
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Logistic regression

Loss function

Linear regression A
h(x) = wTx y
Logistic regression 1] 000 ¢
h(x1) = P
1+e—W'x /
/
/
7
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Logistic regression

Loss function

Linear regression
h(x) = wTx
Logistic regression
h(x) =
]

1He—W'x

=

‘mbient

anuary 17, 2022

11/38



Logistic regression

Loss function

[ 1 ifh(x)>05
y= 0 else

L[(X,¥), h(-)] = { _ Ii:ﬁﬁ“f)%(x))
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Recap: linear regression
Logistic regression

The Perceptron algorithm
Support Vector Machines

Multiclass classification
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The perceptron algorithm

Binary classification ( € {=1,1}") with X eX, i€ {1,...,n}.
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The perceptron algorithm

Binary classification (7 e {—1,1}") with X eX,ic {1,...

We define a nonlinear hypothesis function as:

1, WX <0.

D
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The perceptron algorithm
Let D! C X describe the set of all misclassified x; at step t and the loss function

L[X., Y. W, h()] = { ~WTXy X €D

0 ;else
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The perceptron algorithm
Let D! C X describe the set of all misclassified x; at step t and the loss function

LX., Y, W, h()] = { ~WTXy; X €D

0 :else

L[7,, 7, w, h(-)] is piecewise linear:
linear in regions of the feature space where x; are misclassfied
0 in regions where it is classified correctly

—-—
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The perceptron algorithm

Let D! C X describe the set of all misclassified x; at step t and the loss function

WXy X

; WO\ — W' Xxiyi ;Xi €D

TEAATNO B
L[?,', 7, w, h(-)] is piecewise linear:

linear in regions of the feature space where x; are misclassfied

0 in regions where it is classified correctly
Apply stochastic gradient descent to this loss function:

:else
:Wr+{ 0Xiyi ix €D

0 ;else
-
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The perceptron algorithm
Interpretation of the learning function

T _ ot 0Xyi X €D
= +{ 0 else

for each x;:
correct classification: weight vector remains unchanged
incorrect classification:

yi=1: add vector X
yi = —1: subtract vector?i
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The perceptron algorithm

n
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The perceptron algorithm

n
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[ J wrong
L class
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The perceptron algorithm
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The perceptron algorithm

n
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The perceptron algorithm
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The perceptron algorithm
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The perceptron algorithm

R
e o \% °
e \©
0.5/ e
°
W
| | | |~
= —1 ! !
1 0.5 o 0!5 i
-0.5] °
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The perceptron algorithm

Perceptron convergence theorem

IFF the training data is linearly separable, then the perceptron learning
algorithm will always find an exact solution in finite number of steps.
— Number of steps required might be large

— Until convergence, not possible to distinguish separable problem
from non-separable

— For non-separable data sets the algorithm will never converge
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Recap: linear regression
Logistic regression

The Perceptron algorithm
Support Vector Machines

Multiclass classification
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Support vector machines (SVM)

Large margin classifier

A dog

X,
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Support vector machines (SVM)

Large margin classifier

A

A:Z .Ol.
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Support vector machines (SVM)

Large margin classifier ) ) ) . .
The goal for support vector machines is to find a linear and separating

hyperplane with the largest margin to the outer points in all sets

If needed, map all points into a higher dimensional space until such a
plane exists

A~ training data A data sampled according to
M same distribution (e.g. testing)
~
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Support vector machines (SVM)
Contribution of a single sample to the overall loss:
Logistic regression

LG 9).h0) = -y log (1 ) = (1 1) log

—_—
1+e-Wix
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Support vector machines (SVM)

Contribution of a single sample to the overall loss:
SVM

L[(X,Y), h(-)] = —y - cost,_1(WTx) + —(1 — y) - cost,_o(W ' x)

Jimbient sanay 1 200
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Support vector machines (SVM)

Contribution of a single sample to the overall loss:

SVM
— —
L[(X,¥), h(-)] = —y - costy—1 (W x) + —(1 — y) - costy_o(W x)
Loss Functions for Binary Classification
<= very confident in §=-1 ]‘U“ 1 very confident in j=1=
0/1 loss (for y=1), squared error (for y=1)
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Support vector machines (SVM)

Cost function

Logistic regression
min L[Sy (Slog (1= 0t )) + (=) (o s )| + 2 S W

SVM

min 5 S [vicosty—1(WTx;) + (1 = yi)costy—o(WTx)] + 3 3] w?

A has a similar effect on the overall term as 5
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Support vector machines (SVM)

SVM hypothesis

[y,-costy:1(7v>7x,-) +(1— y;)costy:O(WTx/)] +o> W

/

Il
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Support vector machines (SVM)

SVM hypothesis
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Support vector machines (SVM)

SVM hypothesis

y=1

>0 .
wTx ! = 7 sufficient
<0
> 1 )
WTX{ - 4= confidence
1 & 1
min- ; [y;costy:1(WTx;) +(1— yi)costy:o(Vv)Txi)] +5 g w?
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Support vector machines (SVM)

SVM hypothesis

N > 1 .
WTX{ - 4= confidence
& B awnx Ouitliers: Elastic decision boundary
1 m 1 n
mVLn—IE [y,costy 1(w Tx;) + (1 — yi)cost,— o(w x,)} + 5; W/z
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Support vector machines (SVM)

SVM hypothesis

N > 1 .
WTX{ - 4= confidence
& B awnx Ouitliers: Elastic decision boundary
| | - = °
1 m 1 n
mVLn—IE [y,costy 1(w Tx;) + (1 — yi)cost,— o(w x,)} + 5; W/z
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Support vector machines (SVM)

SVM hypothesis

y=1

> .
WTX{ - _11 = confidence

Ouitliers: Elastic decision boundary

small \" stricter boundary at the cost
of smaller margin
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Support vector machines (SVM)

SVM hypothesis

> .
WTX{ - _11 = confidence

Ouitliers: Elastic decision boundary

large \' tolerates outliers

m n
. 1
min— E [y,costy 1(w Tx;) + (1 — yi)cost,— o(w X; } + EE :W/?

mo
z
352
5 o
o =C
g
22
Zmd
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Support vector machines (SVM)

Large margin classifier

m
"
Z [y,costy (W Tx;)) 4+ (1 — y;)cost,— O(Vv> x,)] + 52 Wj2
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Support vector machines (SVM)

Large margin classifier
m
Z [y,costy (WTx) + (1 — yj)cost,—o(W x,)] +

Rewrite the SVM optimisation problem as

AN 2
min 3 2.=1 W
st. WTix>1 ify =1

Wix;<—1 ify;=0
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Support vector machines (SVM)

Large margin classifier

min %2;721 Wj2
Wix<—1ify;=0
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Support vector machines (SVM)

Large margin classifier

2
min _§]'1VV/' < W1++W>

s.t. Wix>1ify, =1
Wix<—1ify;=0
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Support vector machines (SVM)

Large margin classifier

2
. 1=
min %27_1Wf=%< w$+---+ws) = 5l

WTx < —1ify;=0
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Support vector machines (SVM)

Large margin classifier

2
. 1=
min %27_1Wf=%< w$+---+ws) = 5l

s.t. Wix>1ify, =1
Wix<—1ify;=0

%
; W WTx = wixq + WoXo
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Support vector machines (SVM)

Large margin classifier

2
. 1=
min %27_1Wf=%< w$+---+ws) = 5l

s.t. Wix>1ify, =1
Wix<—1ify;=0

" ; W WX = wixy + woxo = || W] - p
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Support vector machines (SVM)

Large margin classifier

2
. 1=
min %27_1Wf=%< w$+---+ws) = 5l

s.t. Wix>1 ify =1 = |[W|-pi > 1
—T . o —
wix;<—-1ify;=0 = ||wll-pi < -1

" ; W WX = wixy + woxo = || W] - p
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Support vector machines (SVM)

Large margin classifier

tephan Sigg

2
. 1 =0
mp ASLowr =4 (\wr e wE) = Jiwl
s.t. Wix>1 ify =1 = |[W|-pi > 1
WTx < —1 ify;=0 —>||7v>|\-p,§—1
o Which decision boundaray is found?
?
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Support vector machines (SVM)

Large margin classifier

2
. 1
min 334 Wi = %< W$+"’+Ws> = §||W||2

w

s.t. Wix>1 ify; =1 = (|W| -y > 1
—T . o —
wix;<—-1ify;=0 — W] pi < —1

Which decision boundaray is found?
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Support vector machines (SVM)

Large margin classifier

2
. 1
mp ASLowe =3 (Ve rug) = W
s.t. Wix>1 ify; =1 = (|W| -y > 1
—T . o —
wix;<—-1ify;=0 — W] pi < —1

h(X) = Wi X1 + WoXo

\.N Which decision boundaray is found?
._) — W orthogonal to all x with h(x) =0
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Support vector machines (SVM)

Large margin classifier

2
. 1
min 334 Wi = %< W$+"’+Ws> = §||W||2

w

s.t. Wix>1 ify; =1 = (|W| -y > 1
—T . o —
wix;<—-1ify;=0 — W] pi < —1

h(X) = Wi X1 + WoXo

\.N Which decision boundaray is found?
._» — W orthogonal to all x with h(x) =0
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Support vector machines (SVM)

Large margin classifier

2

. 1

mp AL W= (e rw) =

s.t. Wixi>1ify, =1 = |[W||-p; > 1
—T . o —
wix;<—-1ify;=0 = ||wll-pi < -1

\.N Which decision boundaray is found?
h(X) = Wi X1 + WoXo
._) — W orthogonal to all x with h(x) =0
-T2 —
= ming||w||*and ||wW|| - p; > 1
necessitate larger p;
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Support vector machines (SVM)

Large margin classifier

2
_ 1
min %27_1VV,?=%< W$+---+wﬁ> = 5lW|P
s.t. Wixi>1ify, =1 = |[W||-p; > 1
Wix < -1ify;=0 = |[W||-pr < —1

Which decision boundaray is found?

_— .
0 5 ° h(X) = Wi X1 + WaXo
o o D 4’% — W orthogonal to all x with h(x) =0
° ] = min 1||W||2and ||W|| - p; > 1
necessitate larger p;
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Support vector machines (SVM)

Large margin classifier

2
_ 1
min %27_1VV,?=%< W$+---+wﬁ> = 5lW|P
s.t. Wixi>1ify, =1 = |[W||-p; > 1
Wix < -1ify;=0 = |[W||-pr < —1

Which decision boundaray is found?

_— .
X ° h(x) = wixy + waxo
® 0P| -,.V —» W orthogonal to all x with h(x) = 0
° Pe = min 1||W||2and ||W|| - p; > 1
necessitate larger p;
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Recap: linear regression
Logistic regression

The Perceptron algorithm
Support Vector Machines

Multiclass classification

L
Aalto University H tephan Sigg
A School of Electrical ‘ mbient January 17, 2022

Engineering 33/38



Multiclass classification

Multi-class: One-versus all: a0 .,
X2‘ ' . ...I
Train classifiers for each class L IO
to obtain probability that x L e L
belongs to class i: el . ° e
= = o ey e
hi(x) = P(y = i| X, W) GO % m

[ ] \\ . n

then, choose ¢ . AR

X: = }‘.'o

ma; (hi(x)) Pl




Multiclass classification

Multiple classes

. . [
Can we use logistic regression for C
problems with more than two " g
classes? m N
y .
-0 |
u 00 ¢ yg\y u
0.5 3
; <>
0 X 1 W (x) !
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Application to several classes iteratively: One-versus-all
belongs to class 1 or not?

belongs to class 2 or not?
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Questions?

Stephan Sigg
stephan.sigg@aalto.fi

Si Zuo

si.zuo@aalto.fi
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