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Learning goals

Data preparation
Model performance: Confusion matrices, precision, recall, F-score
Common Issues: High bias/variance problems, Regularization
Drawing learning curves
Comparing different models
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Outline

Data collection and preparation

Bias – Variance tradeoff

Evaluation of model performance
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Data, data, data, ... or not (?)

Use separate data sets
Feature selection Identify meaningful features

Training Train a model with given features
Testing Test a trained model and features

Model selection Find a best model given features

Using the same set for multiple
purposes may result in biased
results
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Perparation for training and testing

Separating the data
Data scarcity Most data for training, rest for testing

Diversity Use several runs with different data sets
Randomness Avoid deterministic separation of data

Correlation Training and testing data from different
sessions where possible

Domination Class-sizes during training should be
equal
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Pitfalls in separating the data

This also contributes to a more general
distribution of the collected data, i.e. less
biased with respect to a particular
experimental setting.
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Pitfalls in separating the data

Implications of overlapping:
Overlapping windows for feature
computation may cause correlation after
data separation

This also contributes to a more general
distribution of the collected data, i.e. less
biased with respect to a particular
experimental setting.
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Pitfalls in separating the data

Minimize risk of correlation:
collect data over

multiple subjects
multiple environments
multiple days
multiple times of day
diverse sensing hardware

This also contributes to a more general
distribution of the collected data, i.e. less
biased with respect to a particular
experimental setting.
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Training the model – random data separation
0.632 Bootstrap

Training: n instances with replacement
Testing: all instances not in training
Prob. to pick a specific instance twice:

1−
(

1− 1
n

)n−1

≈ 1− e−1

≈ 0.632

Risk: Correlation of testing and training data



Stephan Sigg
January 24, 2022

7 / 67

Training the model – random data separation
0.632 Bootstrap

Training: n instances with replacement
Testing: all instances not in training
Prob. to pick a specific instance twice:

1−
(

1− 1
n

)n−1

≈ 1− e−1

≈ 0.632

Risk: Correlation of testing and training data



Stephan Sigg
January 24, 2022

8 / 67

Training the model – varying data distributions
k-fold cross-validation

Builds: Multiple
distributions in
training and testing
data

Avoid: random generation
of training/testing
sets from same
data→ correlation
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Training the model on scarce data
Leave-one-out cross-validation

n-fold cross-validation where n is the number of sample instances
Leave out each instance once; train model on remaining instances
Estimate performance on left-out instances (success/failure)

Caution: Possible correlation from data sampled in same condition
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Training the model on data with known correlation
Leave-one-person-out cross-validation

n-fold cross validation where n is the number of subjects
Repeat: leave out instances from 1 subject; train on remaining data
Avoids inner-subject correlation
Left-out condition e.g. person, environment, day, ...
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Outline

Data collection and preparation

Bias – Variance tradeoff

Evaluation of model performance
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Bias - Variance tradeoff
Example: regression-type model



Stephan Sigg
January 24, 2022

12 / 67

Bias - Variance tradeoff
Example: regression-type model



Stephan Sigg
January 24, 2022

13 / 67

Bias - Variance tradeoff
Example
Sample points are created for the function sin(2πx) +N where N is a
random noise value
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Bias - Variance tradeoff
We fit the data points into a polynomial function:

h(x ,−→w ) = w0 + w1x + w2x2 + · · ·+ wMxM =
M∑

j=0

wjx j
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Bias - Variance tradeoff
We fit the data points into a polynomial function:

h(x ,−→w ) = w0 + w1x + w2x2 + · · ·+ wMxM =
M∑

j=0

wjx j

This can be obtained by minimising a loss function which measures the
misfit between h(x ,−→w ) and the training data set:

L[(X ,Y),h(·)] = 1
2n

n∑
i=1

[
h(xi ,

−→w )− yi
]2

L[(X ,Y),h(·)] ≥ 0;
L[(X ,Y),h(·)] = 0 IFF all points are covered by the function
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Bias - Variance tradeoff
One problem is the right choice of the dimension M

When M is too small, the approximation accuracy might be bad

h(x ,−→w ) = w0 + w1x + w2x2 + · · ·+ wMxM =
M∑

j=0

wjx j
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Bias - Variance tradeoff
Visualise loss L[(X ,Y),h(·)] wrt the data by Root of the Mean Squared (RMS)

ERMS =

√∑n
i=1(L[xi , yi),h(xi ,

−→w )])2

n
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Bias - Variance tradeoff
This event is called overfitting

The polynomial is now trained too well to the training data

It performs badly on test data
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Bias - Variance tradeoff
When M becomes too big, the polynomial will cross all points exactly

For M = n, it is always possible to create a polynomial of order M that
contains all values in the data set.
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Bias - Variance tradeoff

With increasing number of data points, the problem of overfitting
becomes less severe for a given value of M
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Bias and Variance in training a learning model

Bias
inability of machine learning model to capture the true
distribution of the data
Example: Linear model to describe non-linear
relationship between data and labels
e.g. linear regression is expected to have a high bias
error; in contrast to other algorithms that take less hard assumptions (e.g. decision trees,

k-Nearest Neighbours, Support Vector Machines)

High bias: more assumption in the learning algorithm on
the underlying distribution
Low bias: fewer assumptions in the learning algorithm



Stephan Sigg
January 24, 2022

21 / 67

Bias and Variance in training a learning model

Bias
inability of machine learning model to capture the true
distribution of the data

Example: Linear model to describe non-linear
relationship between data and labels
e.g. linear regression is expected to have a high bias
error; in contrast to other algorithms that take less hard assumptions (e.g. decision trees,

k-Nearest Neighbours, Support Vector Machines)

High bias: more assumption in the learning algorithm on
the underlying distribution
Low bias: fewer assumptions in the learning algorithm



Stephan Sigg
January 24, 2022

21 / 67

Bias and Variance in training a learning model

Variance
model overfits on a particular dataset (learning to fit very
closely to the points of a particular dataset)
Example: Generally, nonlinear machine learnign
algorithms like decision trees have a high variance

Low variance algorithms: Linear regression, logistic
regression, linear discriminant analysis
High variance algorithms: Decision Trees, k-NN, support
vector machines
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Model selection
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Model selection
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Model selection
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Model selection
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Model selection
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Learning curves

Learning Curves
Plotting learning curves helps to find out,
whether our algorithm suffers from high
variance or high bias
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When the algorithm
suffers from high Bias...
→ crossvalidation error and

training error are close
→ Increasing the training set size

does not help !
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When the algorithm
suffers from high
variance...
→ crossvalidation error and

training error are far apart
→ Increasing the training set

size improves the
performance
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Outline

Data collection and preparation

Bias – Variance tradeoff

Evaluation of model performance
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Evaluation of model performance
Evaluation of classification performance

Classification accuracy
Confusion matrices
Precision
Recall
F1-score
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Evaluation of model performance

Precision
Of all samples that were predicted with
y = 1, what fraction actually belongs to
class 1?

Recall
Of all samples that actually belong to class
1, which fraction has been correctly
predicted with y = 1?
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Evaluation of model performance

Precision

True positive
True positive + False positive

Recall

True positive
True positive + False negative
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Evaluation of model performance

Tradeoff between precision and recall
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Evaluation of model performance

Tradeoff between precision and recall

Precision

True positive
True positive + False positive

Predict a particular class only if very confident
⇒ High precision (minimize false positives)
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Evaluation of model performance

Tradeoff between precision and recall

Recall

True positive
True positive + False negative

Minimise false negatives⇒ High recall
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Evaluation of model performance

Tradeoff between precision and recall

F1 Score
Combines precision and recall into a single
decision variable

F1 Score: 2 · Precision · Recall
Precision + Recall
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Evaluation of model performance

Tradeoff between precision and recall

Fβ Score
Recall is considered β times as important as
precision (for β ∈ R)

FβScore: (1 + β2) · Precision · Recall
β2 · Precision + Recall
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Comparing different models
Why accuracy is not enough
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Comparing different models – Information score
Let C be the correct class of an instance and P(C), P ′(C) be the prior
and posterior probability of a classifier to predict that class

Define:1

Ii =
{

log(P ′(C))− log(P(C)) if P ′(C) ≥ P(C)
− log(1− P ′(C)) + log(1− P(C)) else

The information score (amount of information gained) is then

IS =
1
|C|

|C|∑
i=1

Ii
Note:
P(C) = P ′(C)→ Ii = 0

1I. Kononenko and I. Bratko: Information-Based Evaluation Criterion for Classifier’s Performance, Machine Learning, 6, 67-80, 1991.
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Comparing different models – Brier score

The Brier score is defined as

Brier =
1
|C|

|C|∑
i=1

(t(Ci)− P(Ci))
2

where

t(Ci) =

{
1 if Ci is the correct class (Ci = C)
0 else

and P(Ci) is the probability the classifier assigned to class Ci .
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Comparing different models – ROC curves
Area under the receiver operating characteristic (ROC) curve (AUC)

If probability distributions for
TP and FP known, ROC curve
is generated by plotting
cumulative distribution function
of the TP versus CDF of FP
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Questions?
Stephan Sigg

stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi
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