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Learning goals

@ Data preparation

@ Model performance: Confusion matrices, precision, recall, F-score
@ Common Issues: High bias/variance problems, Regularization

@ Drawing learning curves

@ Comparing different models
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Outline

Data collection and preparation
Bias — Variance tradeoff

Evaluation of model performance
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Data, data, data, ... or not (?)

validatioy
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Data, data, data, ... or not (?)
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Use separate data sets

Feature selection Identify meaningful features \f&“dé,’fi?ﬂ
Training Train a model with given features
Testing Test a trained model and features
Model selection Find a best model given features
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Data, data, data, ... or not (?)

Use separate data sets

Feature selection Identify meaningful features
Training Train a model with given features
Testing Test a trained model and features

Model selection Find a best model given features

validatioy

Using the same set for multiple
purposes may result in biased
results
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Perparation for training and testing @

Separating the data N
Data scarcity Most data for training, rest for testing 3;%‘2 *2
Diversity Use several runs with different data sets 2? 1 ?IE ’1,5 :ll"
Randomness Avoid deterministic separation of data L ]izr‘j gt
Correlation Training and testing data from different ( o \
sessions where possible i i
Domination Class-sizes during training should be e i L
equal training testing
Al e, Jimbient W



Pitfalls in separating the data @

This also contributes to a more general i,
distribution of the collected data, i.e. less
biased with respect to a particular

experimental setting. ;Mwh "MM M,'lh M Wi w l“ UW
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Pitfalls in separating the data

1 Probability for overlapping frames in training/test-set

Implications of overlapping:

Overlapping windows for feature
computation may cause correlation after
data separation

probability
o
2
T
L

This also contributes to a more general
distribution of the collected data, i.e. less oal ]
biased with respect to a particular o
experimental setting.

0

10° 10' 102 10° 10*
~ size of pseudo-frame .

Hammerla, Pl6tz: Let's (not) stick together: Pairwise similarity Biases

cross-validation in activity recognition, Ubicomp 2015
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Pitfalls in separating the data

Minimize risk of correlation:
collect data over

multiple subjects

multiple environments
multiple days

multiple times of day
diverse sensing hardware

This also contributes to a more general
distribution of the collected data, i.e. less
biased with respect to a particular
experimental setting.
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Training the model — random data separation

0.632 Bootstrap
@ Training: n instances with replacement

@ Testing: all instances not in training
@ Prob. to pick a specific instance twice:

n—1
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Training the model — random data separation

0.632 Bootstrap

@ Training: n instances with replacement
@ Testing: all instances not in training
@ Prob. to pick a specific instance twice:

n—1
1_(1_1)
n
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Training the model — varying data distributions
k-fold cross-validation

Set 1 Set 2 Setz ... Set k
Builds: Multiple g3 T N ETERR g L
distributions in R S ANt L g G
. . 2, i SRR TER S
training and testing R L SN ,
data festing  tvaining training  training fraining
training  Testing fraining  fraining fraining
training  training Testing fraining fraining
fraining  training training training testing
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Training the model — varying data distributions
k-fold cross-validation

Builds: Multiple
distributions in
training and testing
data

Avoid: random generation
of training/testing
sets from same
data — correlation

Sef‘l Set 2 Set 3 .« . .
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Training the model on scarce data

Leave-one-out cross-validation
@ n-fold cross-validation where n is the number of sample instances
@ Leave out each instance once; train model on remaining instances
@ Estimate performance on left-out instances (success/failure)

Fo\d et Fold 2 Fold 3 a,.f;i."._f Foldin

Tramm} vamnlﬂf)’fralm@ ‘Tvammg). .. Tvammq)

’res’rmq Tes’rmq Testing Tes’rmq Testing
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Training the model on scarce data

Leave-one-out cross-validation
@ n-fold cross-validation where n is the number of sample instances
@ Leave out each instance once; train model on remaining instances
@ Estimate performance on left-out instances (success/failure)
Caution: Possible correlation from data sampled in same condition

Fo\oL 1 Fold 2 Fold 3+ Foldin

’framm}g) ’fmmw;g)’rralm@ ’(vammg). .o Trammq})

’res)rmq Tes)rmq testing ’fes’rmq testing
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Training the model on data with known correlation
Leave-one-person-out cross-validation

@ n-fold cross validation where n is the number of subjects

@ Repeat: leave out instances from 1 subject; train on remaining data
@ Avoids inner-subject correlation

@ Left-out condition e.g. person, environment, day, ...

Foldia F a 2 Fold 3 4. . Fold 1

’ v ‘2f1 : ‘4'2'} 152 :
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Outline

Data collection and preparation
Bias — Variance tradeoff

Evaluation of model performance
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Bias - Variance tradeoff

Example: regression-type model
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Bias - Variance tradeoff

Example: regression-type model
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Bias - Variance tradeoff

Example

Sample points are created for the function sin(27x) + N where N is a

random noise value
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Bias - Variance tradeoff

Example

Sample points are created for the function sin(27x) + N where N is a

random noise value
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Bias - Variance tradeoff

Example

Sample points are created for the function sin(27x) + N where N is a

random noise value
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Bias - Variance tradeoff
We fit the data points into a polynomial function:

M

ﬁ .

h(x, W) = Wo + Wi X + Wax? + - - - + wyxM = ijx/
/=0

" R M=3
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Bias - Variance tradeoff
We fit the data points into a polynomial function:

h(x, W) = wo + wix + W2x2+~-+WMxM:Zij/

This can be obtained by minimising a loss function which measures the
misfit between h(x, W) and the training data set:

n

L )00 = 5 3 [0 ) ]
L[(x,Y), h(-)] = O;
L[(X,Y), h(-)] = O IFF all points are covered by the function
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Bias - Variance tradeoff
One problem is the right choice of the dimension M

When M is too small, the approximation accuracy mightAk”)e bad

h(X, W) = Wo + Wy X + Wox? + -+ wyxM = " wx!

y y y
K o . N o . J
17 590 M=0 S R M=1 1 T M=3
’ S S 7
\ N
o/ . ° o/ ° ’ \
L Pa) ’ ’ o)
0+« © 0 oY 04+ o f
\ ° 4 \ ° 4 \ ° 4
4 4 /
AN 9 . 9 N
o._.7 o _ .7 o, _7
-14 - X -14 - X -14 - X
T T T T T T
0 1 0 1 0 1
- Aalto Unlversity I tephan Sigg
A School olEI ctri ‘ ALLS January 24, 2022
En g ....... 16767



Bias - Variance tradeoff
Visualise loss L[(X, ), h(-)] wrt the data by Root of the Mean Squared (RMS)

\/ S (L, 7). h(xi, W)))2
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Bias - Variance tradeoff
Visualise loss L[(X,)), h(-)] wrt the data by Root of the Mean Squared (RMS)
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Bias - Variance tradeoff
Visualise loss L[(X,)), h(-)] wrt the data by Root of the Mean Squared (RMS)

Erus =

\/ S (LX), h(x, W)))2
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Bias - Variance tradeoff
Visualise loss L[(X,)), h(-)] wrt the data by Root of the Mean Squared (RMS)
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Bias - Variance tradeoff

Visualise loss L[(X, ), h(-)] wrt the data by Root of the Mean Squared (RMS)
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Bias - Variance tradeoff

Visualise loss L[(X, ), h(-)] wrt the data by Root of the Mean Squared (RMS)

. _\/27_1(L[x,-,y,->,h(x,-,W)l)?
RMS n
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Bias - Variance tradeoff
Visualise loss L[(X,)), h(-)] wrt the data by Root of the Mean Squared (RMS)

. :¢27_1(L[x,-,y,-)7h(xf,W)])Z
RMS n
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Bias - Variance tradeoff

This event is called overfitting
The polynomial is now trained too well to the training data

It performs badly on test data
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Bias - Variance tradeoff
When M becomes too big, the polynomial will cross all points exactly

For M = n, it is always possible to create a polynomial of order M that
contains all values in the data set.
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Bias - Variance tradeoff

With increasing number of data points, the problem of overfitting
becomes less severe for a given value of M
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Bias and Variance in training a learning model

Bias
@ inability of machine learning model to capture the true

distribution of the data

Example: Linear model to describe non-linear
relationship between data and labels

e.g. linear regression is expected to have a high bias
IO, in contrast to other algorithms that take less hard assumptions (e.g. decision trees,

k-Nearest Neighbours, Support Vector Machines)
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Bias and Variance in training a learning model

Bias

@ inability of machine learning model to capture the true
distribution of the data

High bias: more assumption in the learning algorithm on
the underlying distribution

Low bias: fewer assumptions in the learning algorithm

L
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Bias and Variance in training a learning model

Variance

@ model overfits on a particular dataset (learning to fit very
closely to the points of a particular dataset)
Example: Generally, nonlinear machine learnign
algorithms like decision trees have a high variance

L
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Bias and Variance in training a learning model

Variance
@ model overfits on a particular dataset (learning to fit very

closely to the points of a particular dataset)
Example: Generally, nonlinear machine learnign
algorithms like decision trees have a high variance
Low variance algorithms: Linear regression, logistic
regression, linear discriminant analysis

High variance algorithms: Decision Trees, k-NN, support
vector machines

tephan Sigg
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Model selection

High Bias
(underfitting)

O,

High Variance
(overfitting)

‘mbient
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Model selection

High Bias

High Variance
(underfitting) (overfitting)
1 e O—0 M=1 ] ‘ L F{“\ v
y o\\o y l \\ // \
0 = w N
5 0 \9/3\ /\\ ‘
o . o
-1 @ 1 \Qv/ \‘ ‘
|
0 1 0 1
Sohoolf ackica Jimbient

tephan Sigg



Model selection

A
High Bias =z High Variance
(underfitting) - (overfitting)
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Model selection

A ) .
High Bias B High Variance
(underfitting) - (overfitting)
1 \70\ \o o M=1 ] o w"\q\ v o
Y o R . y \_ \
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° 9 training \ ¢ &
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Model selection

High Bias

(underfitting)
1 0 00 M=1
Yig T~ -
0 O
O\o\
=1 -

Aalto University

Efw]_

crossvalidation
error

training
error

High Variance
(overfitting)

8 M=9

Degree of the polynomial
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Model selection

High Bias
(underfitting)
1 o 00 M=1
Yig 2\
0 e
o\'o\
-1
0 7

Efw]_
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error (overfitting)
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Model selection

High Bias
(underfitting)
1 o o—0 M=1
Yo S \
0 O"@\-r\,,\
o\"o\'
-1
0 r

Efw]_

crossvalidation

High Bias €ITOrI
problem

training
error

-1

High Variance
(overfitting)

é 8 M=9

Degree of the polynomial
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Model selection

High Bias
(underfitting)
1 o o—0 M=1
Yo S \
0 O"@\-r\,,\
o\"o\'
-1
0 r

Efw]_

crossvalidation

High Bias €ITOrI
problem

training
error

-1

High Variance
(overfitting)

é 8 M=9

Degree of the polynomial
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Model selection

High Bias
(underfitting)
1 o o—0 M=1
Yo S \
0 O"\Q\-r\,,\
o\'o\'
-1
0 r

Efw]_

crossvalidation
High Bias €ITOrI e
problem

training
error

Degree of the polynomial

-1

High Variance
(overfitting)

8 M=9

0

Aalto University
School of Electrical
Engineering

A

‘ mbient

tephan Sigg

January 24, 2022

29/67



Model selection

‘ 1 i ] N
High Bias z crossvalidation High Variance
(underfitting) w |\~ High Bias  €ITOT (overfitting)
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Learning curves @

Elw]

Learning Curves

Plotting learning curves helps to find out,
whether our algorithm suffers from high

variance or high bias

training set error

training set size
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Learning curves

Learning Curves

Plotting learning curves helps to find out,
whether our algorithm suffers from high

variance or high bias

E[w]

crossvalidation error

training set error

training set size
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E[w]

High Bias
(underfitting)

—

training set size

tephan Sigg
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E[w]

High Bias
(underfitting)

—

training set size
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E[w]

High Bias
(underfitting)

—T

training set size
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E[w]

High Bias
(underfitting)

training set error

training set size
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E[w]

High Bias
(underfitting)

crossvalidation error

training set error

training set size
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High Bias
(underfitting)

crossvalidation error

.
>

E[w]

training set error

—

training set size

/

,‘. .../000.

When the algorithm
suffers from high Bias...

— crossvalidation error and
training error are close

— Increasing the training set size
does not help !
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Elw]

A High Variance
(overfitting)
training set size



Elw]

A High Variance
(overfitting)
training set size
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E[w]

A High Variance
(overfitting)
A
training set size> >
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E[w]

A High Variance
(overfitting)
A
m
training set size
A [



High Variance
(overfitting)

-
>

Elw]

crossvalidation error

training set size
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E[w]

High Variance
(overfitting)

crossvalidation error

training-validation
gap

training set size

When the algorithm
suffers from high
variance...

— crossvalidation error and
training error are far apart

— Increasing the training set

size improves the
performance
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Outline

Data collection and preparation
Bias — Variance tradeoff

Evaluation of model performance
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Evaluation of model performance

Evaluation of classification performance

Classification accuracy
@ Confusion matrices
@ Precision
@ Recall
@ F4-score

=
-
Aw | B2

Classification
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Evaluation of model performance

Predicted class
1 0

True False
positive | negative

[

Actual class

False True
positive | negative

(=)
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Evaluation of model performance @

Predicted class

Precision 1 o
Of all samples that were predicted with True False
— i 0
éa_s; ,1v’;/hat fraction actually belongs to § 1 positive | negative
d O
IS
2
3 0 False True
positive | negative
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Evaluation of model performance

Predicted class

Precision 1 0
Of all samples that were predicted with e False
— i 0
,(\:/Ia_ss1 ,1v’;/hat fraction actually belongs to § 1 positive | negative
! O
IS
Recall g
<

False True

Of all samples that actually belong to class
positive | negative

1, which fraction has been correctly
predicted with y =17

(=)

L
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Evaluation of model performance

Precision Predicted class
1 0
True positive
rue p _ wq | True False
True positive + False positive @ ~||positive| | negative
T
T
2
g False True
(1) s .
positive| | negative
N/
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Evaluation of model performance

Precision

True positive
True positive + False positive

Recall

True positive
True positive + False negative

Predicted class

1 0
@ q Tr_ug FaIss-:
© positive | negative
O
©
2
< 0 Fallsle True
positive |negative

‘mbient
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Evaluation of model performance

Precision Predicted class
12 v n

True positive 1

— — n 2
True positive + False positive n
T
T
Recall =
<

True positive n

True positive + False negative
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Evaluation of model performance

Precision Predicted class
1 2 P n
True positive 1TR
True positive + False positive @ 2 TR
S R
(S} 3
© TP
Recall 2 ’
O TR
< Tp
True positive n TP

True positive + False negative

L
Aalto University b H t gtepﬂan glgg
ool of Electrical Jimbien danuary 24, 2022

51/67




Evaluation of model performance

Precision Predicted class
12 v n
True positive 1P
True positive + False positive ﬁ 2
T
T .
Recall 2 -
<
True positive n
True positive + False negative
Ttepnan 5100

‘mbient
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Evaluation of model performance

Precision

True positive
True positive + False positive

Recall

True positive
True positive + False negative

12
1/ TPFN

FN

FN

FN

Predicted class

FN

n
FN

N
—
-

-n
o

-n
o

Actual class
M
O
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nFp
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Evaluation of model performance

Precision Predicted class
2 .o n
1{TPFN|FNFNFN|FNFN
True positive w 2|FP
True positive + False positive < |FP
® .|FP
3.
Recall S
FP
o n|FP
True positive
True positive + False negative 6
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Evaluation of model performance

Precision Predicted class
_2 = a o n
:I(ﬁ%FN FNFNFNFNFN)@
True positive w 2|FP
True positive + False positive < |FP
T .|FP
3.
Recall S
FP
» n|FpP
True positive
True positive 4 False negative 6
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Evaluation of model performance

Precision Predicted class
_2 PR n

MﬁbFNFNFNFNFNFN

FPITNTNTN[TN[TN[TN

FPITNTN[TN[TN[TN[TN
-|FPITNTNTN[TN[TN[TN
"|FPITNTNTN[TNITNTN
FPITNTNITNTNTNTN
n|FPITNITNTNTNTN[TN

True positive
True positive + False positive

N

Actual class

Recall

True positive
True positive + False negative
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Evaluation of model performance

Tradeoff between precision and recall

11\
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Evaluation of model performance

Tradeoff between precision and recall

Precision

True positive
True positive 4+ False positive

Predict a particular class only if very confident
= High precision (minimize false positives)
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Evaluation of model performance

Tradeoff between precision and recall

Recall

True positive
True positive 4+ False negative

Minimise false negatives = High recall
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Evaluation of model performance

Tradeoff between precision and recall

A
1--
F, Score
Combines precision and recall into a single _
decision variable g
o
Precision - Recall
Fi Score: 2- —
Precision + Recall
0 Precision 1: >

D
3|
3
8
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Evaluation of model performance

Tradeoff between precision and recall

A
1--

Fs Score

Recall is considered /3 times as important as _

precision (for 5 € R) §
o

Precision - Recall
F re: (1+ 5?)-
sScore: (1+57) 32 - Precision + Recall
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Comparing different models @

Why accuracy is not enough
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Comparing different models — Information score

Let C be the correct class of an instance and P(C), P'(C) be the prior
and posterior probability of a classifier to predict that class

Define:’

[ { log(P'(C)) — log(P(C)) if P/(C) = P(C)
"7 —log(1 —P'(C)) +log(1 —P(C)) else

The information score (amount of information gained) is then

1 C| Note:
IS:WZI,- P(C)=P'(C)— =0
i=1

1 |. Kononenko and |. Bratko: Information-Based Evaluation Criterion for Classifier's Performance, Machine Learning, 6, 67-80, 1991.
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Comparing different models — Brier score

The Brier score is defined as

IC|
Brier — |;_| S (H(C) - P(C))?

where

\__J 1 if Cjis the correct class (C; = C)
t(Ci) = { 0 else

and P(C;) is the probability the classifier assigned to class C;.
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Comparing different models — ROC curves

Area under the receiver operating characteristic (ROC) curve (AUC)

100

80 1
g ol If probability distributions for
:E‘ TP and FP known, ROC curve
:; 0 is generated by plotting

cumulative distribution function
of the TP versus CDF of FP

20 1

0 20 40 &0 8() 100
Falsc Positives (%)
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Questions?

Stephan Sigg
stephan.sigg@aalto.fi

Si Zuo

si.zuo@aalto.fi
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