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Learning goals
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@ backpropagation

@ convolution

@ pooling

Tiephan S1g0
February 2, 2022
2/33
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Neural networks

Deep Learning
CNN (basics)
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Neural networks




Neural networks

Neural networks are also known as multilayer perceptrons
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Neural networks

Neural networks are also known as multilayer perceptrons

— However, the model comprises multiple layers of logistic regression
models (with continuous nonlinearities) rather than multiple
perceptrons (with discontinuous nonlinearities)

(Important, since the model is therefore differentiable which will be
required in the learning process)
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Neural networks

For the input layer, we construct linear combinations of the input

variables xi, ..., xp, and weights w1, .. ., W(D11)D2

Dy
(2) _ (1) (1)
%] —ZW/'/ Xi =+ Wo

Each value a )in the hidden and output layers I,/ € {2,...,L} is
computed from zj(') using a differentiable, non-linear activation function

-0 ()
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Neural networks
Input layer linear combinations of xy,..., xp, and wyq, ..

Dy
@ _ My L (D)
z7 = i x +
i=1

Activation function: Differentiable, non-linear

o 12 (o)

f.«(+) is usually a sigmoidal function or tanh

-, Wp,D,
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Neural networks

Values aj(z) are then linearly combined in hidden layers:
Do
(3) _ (2) 5(2) ()
Zx _ijk a "+ Woy
Jj=1

with k =1, ..., D, describing the total number of outputs
Again, these values are transformed using a sufficient transformation
function f,, to obtain the network outputs

()

act
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Neural networks
Combine these stages to achieve overall network function:

act act

Dy
h(%, W) = £ ZW@)f@ S w4 ) + @
i=1

(Multiple hidden layers are added analogously)
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Neural networks
Combine these stages to achieve overall network function:

Dy
() < 10 (S0 (S ) D
i=1

(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements are
computed from ’left to right’
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Neural networks
Combine these stages to achieve overall network function:

Dy
h(3. ) = 1 z W20 (z W+ wé}’) uf?
i=1

(Multiple hidden layers are added analogously)

We speak of Forward propagation since the network elements are
computed from ’left to right’

This is can be seen as logistic regression where features are
learned in the first stage of the network
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Neural networks

Classification

2 classes Cy and C_;

@ Output interpreted as conditional probability P(C4 |7)
@ Analogously, we have P(C_1|X) =1 — P(C1|X)

K classes Cq,--- ,Ck
@ Binary target variables y, € {0,1}
@ Network outputs are interpreted as h(X, W) = P(yx = 1|X)
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Neural networks

Notable results
With linear activation functions of hidden units = Always find equivalent

network without hidden units

(Composition of successive linear transformations itself linear transformation)

1 2 - L2 L-1 L
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Neural networks

Notable results ) .
Number of hidden units < number of input or output units = not all linear

functions possible

(Information lost in dimensionality reduction at hidden units)

1 2 - L2 L-1 L




Neural networks

Notable results

Neural networks are Universal approximators! 2345678
= 2-layer linear NN can approximate any continuous function

1 K. Funahashi: On the approximate realisation of continuous mappings by neural networks, Neural Networks, 2(3), 183-192, 1989

2a. Cybenko: Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2, 304-314, 1989

3K. Hornik, M. Sinchcombe, H. White: Multilayer feed-forward networks are universal approximators. Neural Networks, 2(5), 359-366, 1989
4N.E. Cotter: The stone-Weierstrass theorem and its application to neural networks. IEEE Transactions on Neural Networks 1(4), 290-295, 1990

5y, Ito: Representation of functions by superpositions of a step or sigmoid function and their applications to neural network theory. Neural
Networks 4(3), 385-394, 1991

6. Hornik: Approximation capabilities of multilayer feed forward networks: Neural Networks, 4(2), 251-257, 1991
7Y.\/. Kreinovich: Arbitrary non-linearity is sufficient to represent all functions by neural networks: a theorem. Neural Networks 4(3), 381-383, 1991
SB.D. Ripley: Pattern Recognition and Neural Networks. Cambridge University Press, 1996

—-—
Aalto University ) tephan Sigg
School of Electrical ‘ 1Ll February 2, 2022
Engineering 13/33




Neural networks — Loss function
Loss function for Logistic regression

LI(x, ), h() = —5 [ yi (log h(x;)) + (1 = ;) (log (1 — h(x))))]
+am L W

Loss function for Neural networks
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Neural networks — Loss function
Loss function for Logistic regression

LI(X,Y),h() = —% X2 vilog h(x)) + (1 — yi) (log (1 — h(x;)))]
+ﬁ 27:1 Wj2

Loss function for Neural networks

L[(x,Y),h()] =
m C
—15 Z Zyic log(h(x;))e + (1 — yic) log(1 — (h(x)))c)
i=1 c=1
A L—1 D; D
tam 22 o (W
I=1 i=1 j=1
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Neural networks — Loss function

L[(x,Y), h(-)] =
—n% Iijciym log(h(x;))e + (1 — ¥ic) log(1 — (h(Xi))c)
St ()y2
+ﬁl 1;v 1 Wy,
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Neural networks — Loss function
LI(X, Y), h(-)] =

m C
LIS e os(hOx)). + (1 — yi) (1 — (h(x)).)
o L—1 Dy Dy

3 2223 (M0

I=1 u=1 v=1

m Number of training samples

C Number of classes (output units)
L Count of layers

D, Number of units at layer /

Tiephan S1g0
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Neural networks — Loss function

L{(x, Y), h(-)] =

C
~LISTS i tog(h0a)). + (1 — yio)log(1 — (h(x).)
m i=1 c=1
A L—1 D; Dy 0 2
+ﬁ§;;(w w)

m Number of training samples
C Number of classes (output units)
L Count of layers

D, Number of units at layer /
One cost function for each respective output (class)

gtepﬂan glgg
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Neural networks Loss function

L—1 D; Dy

L[(X,¥), h(-)] = —— ZZy,clog h(x))e + (1 = yie) log(1 — (h(x))e) +—ZZZ(WW

i=1 c=1

I=1 u=1v=1
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Neural networks Loss function

L—1 Dy Diy
L[(X, ), ()] = —— Zzy,c log(h(x)) + (1 — yic) log(1 — (h(x)))c) | + % S>>y
i=1 c=1 =1 u=1v=1

Aim minimise L[, ), h(-)] (minL[(X, ), (-))
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Neural networks Loss function

L—1 Dy Diy
L[(X, ), ()] = —— Zzy,c log(h(x)) + (1 — yic) log(1 — (h(x)))c) | + % S>>y
i=1 c=1 =1 u=1v=1

Aim minimise L[(, ), h()] (minL[(X, ). h())
Required 8,)L[(X V), h(-)]
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Neural networks Loss function
L[(x,)), = Zz}ﬁc log(h(xi))c + (1 — Yic) log(1 — (h(xi))c)

Aim minimise L[(, ), h()] (minL[(X, ). h())
Required 8,)L[(X V), h(-)]

L—1 D; Dy

a2 > (Y

I=1 u=1v=1

Backpropagation (effectively compute O%QL[(X’ V), h(’)))

55,’) Error of node u in layer /

Layer L 5,(,L):af,L)—yu:>5(—L§:aT§—7
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Neural networks Loss function
L[(x,)), = Zz}ﬁc log(h(xi))c + (1 — Yic) log(1 — (h(xi))c)

Aim minimise L[(, ), h()] (minL[(X, ). h())
Required 8,)L[(X V), h(-)]

L—1 Dy Diy

a2 > (Y

I=1 u=1v=1

Backpropagation (effectively compute O%QL[(X’ V), h(’)))

55,’) Error of node u in layer /
Layer L 5,(,L):af,L)—yu:>5(—L§:aT§—7
Layer / 50 — (W(’))Té(’+13 o f;ct(ﬁ)
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Neural networks Loss function
L[(x,Y), =—-— ZZ}’:c'Og h(xi))e + (1 — yic) log(1 — (h(xi))c)

Aim minimise L[(, ), h()] (minL[(X, ). h())
Required ‘9,)L[(X V), h(-)]

L—1 Dy Diy

a2 > (Y

I=1 u=1v=1

Backpropagation (effectively compute O%QL[(X’ V), h(-)])

55,’) Error of node u in layer /
Layer L 5,(,L):af,L)—yu:>c5(—L§:aT§—7
Layer / 50 — (W(’))T(S(’+13 o f;ct(ﬁ)

( o — Hadamard product (Element-wise multiplication))

(£

act

— Derivative of the activation function)
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Element-wise multiplication

Hadamard product

a;r  ape ags b4
Ay axz axz |o| bz
as; ase ass ba1

b12
b2z
baz

b1z
bes | =
bas

aiq by
azq bz
azq baq

a2 b2
agz bao
asz bao

aiz by
az3 bos
asz bas

)
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L-2 L-1 L Ground
truth

Backpropagation (computation of the 55,/))
5(/) Error of node v in layer /

LayerLé(L) (L yéé_;—aﬁ 7
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L-2 L-1 L Ground
truth

Backpropagation (computation of the 55,’))
51(]) Error of node v in layer /

Layer L o) = d) —y, = 50 =0 7

D

i
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L-2 L-1 L Ground
truth

%

Backpropagation (computation of the 55,’))
(51(]) Error of node v in layer /

Layer L o) = d) —y, = 50 =0 7
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L-2 L-1 -oL Ground
0 truth

Backpropagation (computation of the 55,’))
51(]) Error of node v in layer /

Layer L o) = ) —y, = 50 =0 7
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L-2-7L-1 =0 L Ground
6 o} truth

Backpropagation (computation of the 55,/))
55/) Error of node v in layer /
Layer L 5,(JL):aff)—yu:s(5ﬁ:aﬁ—7

Layer / 58 — (W(’))Té(’“; o gct(ﬁ)
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- TL- d
LZ&L) 1gf)|_ Gtrrc::;ﬂ

Y

Backpropagation (computation of the 55,/))
55,/) Error of node v in layer /
Layer L 6,(}):aff)—yu:s(5(j:aﬁ—7

Layer / 58 — (W(’))T(S(’“; o gct(ﬁ)
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L-2 . L-1 L Ground
Foy truth
O§E f;c‘;(zgw —af(fr) — L i
d a | -
2 —tanh () = Zarctan (§z)
7 y2 4 ‘ z 0. .

Backpropagation (computation of the 5{,/))
58/) Error of node u in layer /
Layer L 6£L):aﬂL)—yu:>(@:aﬁ—7

Layer / 50 — (W(’))T(S(’“; o gct(ﬁ)
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L-2 L1 L Ground
oY truth

7|y

Backpropagation (computation of the 5{,/))
55,/) Error of node u in layer /

Layer L 6£L):aﬂL)—yu:>(@:aﬁ—7
T
Layer | 6() = (W(’)) s o f! (2

directic;ﬁ —(a—y)
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Remarks

Initialisation of weights

w;; have to be initialised randomly !

wj = 0||wj = wiVi, j,j, 1 = 6. will be identical V u

L-2 L-1 L Ground
truth

%
Y,
L
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Example: Forward- and Backpropagation

@) r_r1)
fact (zl )
X, ) o
£ @) _2)
fact (Z; )
M r_1) f(3)(z(3]) . y
fact (zz ) act \<q
@ 2
foee (27)
x -
2 y (1)
)
f (237)
Siephan 8190
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Example: Forward- and Backpropagation

L (1) 1)y — (1)
al _fact (211 ) - fact (W11X1+ W21X2)

£ (2)
‘ﬁct (Z;Zl)

m 1
izt

fa(Z)——>y

/ o

(2)
fiee(2)

£

fe(23)
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Example: Forward- and Backpropagation

W_ gD _
a, = f;ct (Z;D) - f;act (\N12X1 + \szxz)

fag (Z;Z))\
fa(z)——»y

@2y
fact (Zz )
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Example: Forward- and Backpropagation

()_ (1) (1)
1 fact (Zm)_ act (\Nlax + W3X2)

£ (Z)(Zm)\
/ k. ‘3’(213))__’ y

2y _(2)
[ (z2
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Example: Forward- and Backpropagation

(2)
=632 = £l (Wit Wi+ wiat)

oo (Z22)——— Y

e

i (22

L
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Example: Forward- and Backpropagation

_ ¢ (2)
3, =, (Z) = o (Wil wid) + whal)

(@) ——> Y

L
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Example: Forward- and Backpropagation
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Example: Forward- and Backpropagation
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Example: Forward- and Backpropagation
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Example: Forward- and Backpropagation
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Example: Forward- and Backpropagation
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Example: Forward- and Backpropagation

. df. (2%
W, = W,+ 6;1) dzi”l Xy

df ()
V\éll = V\él+ 6;.1) dz]u)l XZ
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Outline

Neural networks

Deep Learning
CNN (basics)
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Deep Learning introduction

Imagenet

S f DNN
UCCESSes 0 S Introduced CNNs which largely improved

In recent years, deep neural networks have R LY
let to breakthrough results for various on ex.|st|nag image classification results at
pattern recognition problems such as that time
computer vision or voice recognition. \\
@ Convolutioal neural networks had an
essential role in this success

@ CNNs can be thought of having many
identical copies of the same neuron
— lower number of parameters @Krizhevsky, Sutskever, Hinton (2012). Imagenet classification with deep

convolutional neural networks.

3
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CNN introduction

What is convolution?
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CNN introduction

How to use convolution with images?

Example: Blur images
We can blur parts of images by averaging a

box of pixels: g0) ~>
T s : ﬁ

—_—

School of Electrical February 2, 2022
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CNN introduction @

How to use convolution with images?

Example: Detect edges

We can detect edges in images by taking
the values -1 and 1 in two adjacent pixels
and 0 everywhere else:

Similar adjacent pixels: y =0
Different adjacent pixels: |y| large

{0

7 tephan Sigg
‘ 1oL February 2, 2022
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CNN introduction

Convolution in Neural Networks [ z
Convolution function S w
. . I 4
Deviate from fully connected input layer
©) ) / m . (2 i, =7 &)
® 2" =l (WOK + 2o =1 W) Xk+i) y A
2

-
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CNN introduction

Convolution in Neural Networks [ z
Convolution function S w
. . I 4
Deviate from fully connected input layer
©) ) / m . (2 i, =7 &)
® 2" =l (WOK + 2o =1 W) Xk+i) y A
2

-
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CNN introduction

Convolution in Neural Networks

Convolution function

Deviate from fully connected input layer
P @ I mo(2),
2k act \ Wok T+ Z/:O 21:1 Wj Xk+i

(2)

here: z,((z) = fut (WOk )

wx + w2

—
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

W11
Wa 1

W = W3 1
Wy 1

Wi 2
Wa 2
W32
Wy 2

W13
Wa 3
W33
Wa 3

Wi .4
W2 4
W34
W4 4

—
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

Wit Wiz
Wa1  Wap2
W= | Ws1 W32
Waqt Wapo

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

Wi Wip
0wy
0 0
0 0

0
Wi 2
Wi 1

0

Wi .4
W2 4
W34
W4 4

Wi 2
W11

—
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

Wi Wip
Wa 1 Wop
W = W31 Wap
Ws1 Wap2

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

Wil Wip
0w,
0
0

0
Wy 2
W11

0

Wi .4
Wa 4
W3 4
W4 4

Wi 2
W11

Neurons exclusively defined by their
weights — same weights = identical

copies of a neuron
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

W11
Wa 1

w=| War
Wy 1

Wi 2
Wa 2
W32
Wy 2

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

W12
W1 1
0
0

0
Wi 2
W11

0

Wi .4
W2 4
W34
W4 4

Wi 2
W11

Multiplying CNN weight matrix =
sliding a function
[-.-,0, wy1, wi,0,...] over the X;
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

Wi Wip
Wa 1 Wop
W= | Ws1 W32
Ws1 Wap2

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

Wil Wip
0w,
0
0

0
Wy 2
Wi 1

0

Wi .4
Wa 4
W3 4
W4 4

Wi 2
W11

Analogous to reuse of functions in
programming: Learn neuron once and

apply in multiple places
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

Wi Wip
Wa 1 Wop
W = W31 W32
Waqt Wapo

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

Wil Wip
0w,
0
0

0
Wy 2
W11

0

Wi .4
Wa 4
W3 4
W4 4

Wi 2
W11

A 2D conv. layer (image classificaiton)
canonically over inputs x; in a 2D grid
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CNN introduction

Convolution in Neural Networks
Traditional weight matrix

Wi 1
Wa 1

W = W3 1
Wy 1

Wi 2
Wa 2
W32
Wy 2

W13
Wa 3
W33
Wa 3

CNN weight matrix (here)

Wi 2
W1 1
0
0

0
Wy 2
W11

0

Wi .4
Wa 4
W3 4
W4 4

Wi 2
W11

3D CNN seldom but might be applied
to e.g. videos or 3D medical scans
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CNN overview

Different types of lavers in a CNN

pooled Fully-connected 1

feature maps pooled  featuremaps  featyre maps
feature maps

plylx)

Outputs

- Convolutional Pooling 1 convolutonal
layer 1 layer 2

Pooling 2

Interpretation: Convolution and pooling used as activation functions
Al Bttt Jimbient o

Engineering 28/33




CNN overview

Feature maps — Kernels

Image Matrix

=

Output Matrix

L
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CNN overview

Pooling layers — Pooled feature maps

Pooling reduces the dimension of an
input representation

: !
Allows to make assumptions about offel s/ s J
features contained in the binned Pl | jOo | 21x2 J
sub-regions 3, \ 60| 20 g) Mg 3 1| 3e
- Poolin )
Common types of pooling 1 i/"’ 252’-“: 77 J
Max pooling pick the maximum
Min pooling pick the minimum

‘mbient

February 2, 2022
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CNN example

Speech prediction from audio samples
Input evenly spaced samples
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CNN example @

Speech prediction from audio samples ! C

Symmetry Audio has local properties —\5
(frequency, pitch, ...) that are useful *2 ——’@
everywhere in the input — group

>
neurons that look at small time ’ @
segments to compute features v o :'
7
xg 7~ ;
¢

Aalto University 2 tephan Sigg
A School of Electrical ‘ mbient February 2, 2022
Engineering 31/33



CNN example @

Speech prediction from audio samples ! C

Yoy L5
Activation the output of each convolutional /7 ;
layer is fed into a fully-connected xg .
layer ¢
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CNN example

Speech prediction from audio samples

Stacking Higher-level, abstract features found
by stacking convolutional layers
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CNN example @
Speech prediction from audio samples 4 C

Pooling Pooling layers zoom out to allow
later layers to operate on larger
- sections
Al e, Jimbient Fonomy 3 05
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Questions?
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