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Learning goals

Understand the concepts of
Decision trees
Information score
Estimation of error rates
Pruning
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Outline

Decision Trees

Optimizing the tree structure

Improving classification results
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Decision trees
Assume that some training data was recorded and labelled for the
two classes we consider in this example
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Decision trees
A decision tree divides the examples from a dataset according to the
features and classes observed for them
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Decision tree

How to generate such decision tree?

First select a feature to split on and place it at the root node.
Then repeat this procedure for all child nodes

How to determine the feature to split on?
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Decision tree
WiFi Accelerometer Audio Light At work

yes no yes no yes no yes no yes no
<3 APs 3 7 walking 4 8 quiet 8 5 outdoor 4 7 16 14
[3, 5] 5 5 standing 1 4 medium 6 3 indoor 12 7
>5 APs 8 2 sitting 11 2 loud 2 6
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Decision tree

We are interested in the gain in information when a particular choice is taken

The decision tree should then decide for the split that promises maximum information
gain.
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Decision tree
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Decision tree

Information gain can be estimated by the entropy of a value:

E(p1,p2, . . . ,pn) = −p1 log2 p1 − p2 log2 p2 · · · − pn log2 pn
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Decision tree

E(p1, p2, . . . , pn) = −p1 log2 p1 − p2 log2 p2 · · · − pn log2 pn
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Decision tree
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Decision tree

Information value:

WiFi: ≈ 0.868
Acc: ≈ ...

Audio: ≈ ...

Light: ≈ ...
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Decision tree

Information value:

WiFi: ≈ 0.868
Acc: ≈ 0.756

Audio: ≈ 0.884
Light: ≈ 0.948

Information gain:

Initial information value (working [yes/no]): 0.997
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Graphical interpretation: Decision tree
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Remark: An alternative to Information gain

Gini impurity

Gini impurity describes how often samples would be incorrectly labelled
if labelled randomly according to the disctribution of labels in the subset.
Let pi be the probability that a sample is correctly labelled. Gini impurity
is then computed as

IG =
n∑

i=1

pi · (1− pi)
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Regression trees
Regression trees

Decision trees where the target variable can take continuous values (typically real
numbers) are called regression trees.
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Practical issues – numeric values
Nominal feature values
For nominal features, the decision tree splits on every possible value.
Therefore, the information content of this feature is 0 after such branch
has been conducted→Never branches on nominal features twice
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Practical issues – numeric values

Numeric feature values
For numeric feature values,
splitting on each possible
value would lead to a very
wide tree of small depth.

Therefore,
for numeric values, the tree is
split into several intervals.

Nested intervals possible
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Practical issues – Missing values

Missing values in a data set
Missing values are common in real-world data sets

participants in a survey refuse to answer
malfunctioning sensors
Biology: plants or animals might die before all
variables have been measured
...

Most machine learning schemes assume no
significance in the fact that a certain value is missing.
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Practical issues – Missing values

The absence of data might already hold valuable information!

Example

People analyzing medical databases have noticed that cases may, in
some circumstances, be diagnosable simply from the tests that a doctor
decides to make – regardless of the outcome of the tests1

1Witten et al., Data Mining, Morgan Kaufmann, 2011
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New feature for missing values
Add binary feature describing whether the
value is missing or not
split the instance at the missing feature:
1 propagate all instances (weighted with the

respective frequency observed from training
samples) down to the leaves

2 combine the results at the leaf nodes given the
weighting of the instances
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Outline

Decision Trees

Optimizing the tree structure

Improving classification results
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Optimizing the tree structure
Motivation
Fully expanded decision trees often contain unnecessary structure that
should be simplified before deployment
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Confidence on a prediction

Assume we measure the error of a classifier on a test set and estimate a
numerical error rate of q′ (a success rate of p′ = (1− q′)).

What can we say about the true success rate p?
It will be close to p′,
but how close? (within 5% or 10% ?)

This depends on the size of the test set
Naturally, we are more confident on p′ when it based based on a large
number of evaluations.
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Confidence on a prediction
In statistics, a succession of independent events that either succeed or
fail is called a Bernoulli process
Bernoulli process
A Bernoulli process is a repeated coin flipping, possibly with an unfair
coin

Assume that out of n events, s are successful.
Then we have an observed success rate of p′ = s

n

Confidence Interval
The true success rate p lies within an interval with a specified confidence
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Confidence on a prediction
The probability that a random variable p = p′−µ

σ , with zero mean and
unit variance, lies within a certain confidence range of width 2z is

P[−z ≤ p ≤ z] = c

Confidence limits for the normal distribution are e.g.
P[p ≥ z] 0.001 0.005 0.01 0.05 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

Standard assumption in such tables on the random variable:
mean 0

variance 1

(σ and µ are the standard deviation and mean of p′ )
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Confidence on a prediction
P[p ≥ z] 0.001 0.005 0.01 0.05 0.1 0.2 0.4
z 3.09 2.58 2.33 1.65 1.28 0.84 0.25

z is measured in standard deviations from the mean:

Interpretation

E.g. P[p ≥ z] = 0.05 implies that there is a 5% chance that p lies more
than 1.65 standard deviations above the mean.

Since the distribution is symmetric, the chance that p lies more than
1.65 standard deviations from the mean is 10%:

P[−1.65 ≤ p ≤ 1.65] = 0.9
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Confidence on a prediction

In order to apply this to the random variable p′, we have to reduce it to
have zero mean and unit variance.

→ subtract mean µ & divide by standard deviation σ =

√∑n
i=1(p′−µ)2

n

This leads to

P

−z <
p′ − µ√∑n

i=1(p′−µ)2

n

< z

 = c
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Confidence on a prediction

To find confidence limits z, given a target confidence value c:
consult a table with confidence limits for the normal distribution

since one-sided success probabilities (not error-) are displayed, we
have to subtract Pr [X ≥ z] = c from 1 and divide by two:

z =
1− c

2
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Confidence on a prediction

P

−z <
p′ − µ√∑n

i=1(p′−µ)2

n

< z

 = c

Then, write inequality above as equality, invert it to find an
expression for µ and solve a quadratic equation to yield

µ =

(
p′ + z2

2n ± z
√

p′
n −

p′2
n + z2

4n2

)
1 + z2

n

The resulting two values are the upper and lower confidence boundaries
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Confidence on a prediction

Example

p′ = 0.75; n = 1000, c = 0.8 (z = 1.28) → [0.732,0.767]
p′ = 0.75; n = 100, c = 0.8 (z = 1.28) → [0.691,0.801]

Note that the assumptions taken are only valid for large n
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Optimization – Noisy data
Fully expanded decision trees often contain unnecessary structure that
should be simplified before deployment

Pruning
Prepruning Trying to decide through the tree-building process when to

stop developing subtrees
Might speed up tree creation phase
Difficult to spot dependencies between features at this
stage (features might be meaningful together but not on
their own)

Postpruning Simplification of the decision tree after the tree has been
created
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Postpruning – subtree replacement
Select some subtrees and replace them with single leaves

Will reduce accuracy on the training set
May increase accuracy on independently chosen test set (reduction
of noise)
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Optimization – Noisy data
Postpruning – subtree raising
Complete subtree is raised one level and samples at the nodes of the
subtree have to be recalculated
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Optimization – Estimating error rates

When should we raise or replace subtrees?

Estimating error rates
Raise the tree, when the estimated error rate of an expanded tree
(considering all leaf nodes) would exceed the estimated error rate of a
raised subtree.



Stephan Sigg
February 7, 2022

46 / 56

Optimization – Estimating error rates

When should we raise or replace subtrees?

Estimating error rates
Raise the tree, when the estimated error rate of an expanded tree
(considering all leaf nodes) would exceed the estimated error rate of a
raised subtree.



Stephan Sigg
February 7, 2022

47 / 56

Estimating error rates – success probability
Given a confidence c we find a confidence limit z
(for c = 25%→ z = 0.69) such that

P

 q′ − µq′√
q′(1−q′)

n

> z

 = c

(with the observed error rate q′ = e
n )

This leads to a pessimistic error rate µq′ as an upper confidence limit
for q (solving the equation for q):

µq′ =
q′ + z2

2n + z
√

q′
n −

q′2
n + z2

4n2

1 + z2

n
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Example

Lower left leaf (e = 2,n = 6) Utilising the formula for
µq′ , we obtain
q′ = 0.33 and µq′ = 0.47

Center leaf(e = 1,n = 2) µq′ = 0.72
Right leaf (e = 2,n = 6) µq′ = 0.47
Combine error estimates Utilising ratio 6:2:6 this

leads to a combined error estimate of

0.47 · 6
14

+
0.72 · 2

14
+

0.47 · 6
14

≈ 0.51

Error estimate for parent node q′ = 5
14 → µq′ = 0.46

0.46 < 0.51⇒ prune children away

Minimizing the error:

Majority vote at the parent

node F1 vs. majority votes

at the leaves ?
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Outline

Decision Trees

Optimizing the tree structure

Improving classification results
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Bottom-line: Decision trees

Strengths
Simple, intuitive approach
Robust to the inclusion of irrelevant features
Invariant under transformation of features, e.g. scaling

Weaknesses
Tendency to overfit
Often complex, deep trees even for simple linearly separable classes
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Improving classification results
C4.5 – design decisions (→ heuristic)

Postpruning – Confidence value c = 25%
Postpruning – Split Threshold Candidate splits on a numeric feature are

only considered when at least min(10%,25) of all training
samples are cut off by the split

Prepruning with information gain Given u candidate splits on a certain
numeric attribute, log2

u
n is subtracted from the information

gain
in order to prevent overfitting
Negative information gain→ tree-construction will stop
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Improving classification results
Tree bagging

Bootstrap aggregating, or bagging builds several 100 or 1000 trees from
random subsets of the training set (random samples with replacement)

Predictions are made after majority vote or by averaging probabilities.
Reduces variance without affecting bias
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Improving classification results
Random forests
Random forests exploit Tree bagging and in addition use a random
subset of features at each candidate split in order to reduce the impact
of strong features. (Strong features may lead to dependent trees and
thus impair the benefits of Tree bagging)
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Improving classification results
Extra Trees
A way to generate extremely randomized trees is to build a Random
forest but in addition for each feature split exploit random decision
(based on information gain or Gini impurity ) instead of deterministic
choice.
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Questions?
Stephan Sigg

stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi
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