

CS-C3240 – Machine Learning D

Stephan Sigg

Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi

Version 1.0, February 9, 2022

Understand the concepts of

- unsupervised learning
- clustering
- k-means
- DBSCAN

Introduction

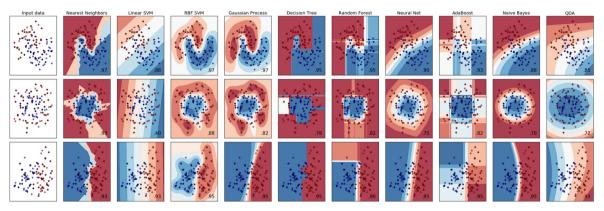
k-means

DBSCAN

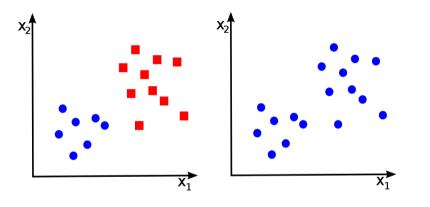
Gaussian Mixture Models

Stephan Sigg February 9, 2022 3 / 22

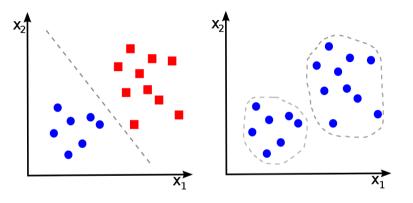
Summary supervised classification algorithms



QDA: Quadratic Discriminant Analysis AdaBoost: combine 'weak learners'; subsequent learners trained in favor of previous misclassified instances BBE: Badial Basis Function



Supervised: $\{(x_{1,1}, x_{1,2}) \rightarrow y_1, (x_{2,1}, x_{2,2}) \rightarrow y_2, \dots, (x_{n,1}, x_{n,2}) \rightarrow y_n\}$ Unsupervised: $\{(x_{1,1}, x_{1,2}), (x_{2,1}, x_{2,2}), \dots, (x_{n,1}, x_{n,2})\}$



Supervised: $\{(x_{1,1}, x_{1,2}) \rightarrow y_1, (x_{2,1}, x_{2,2}) \rightarrow y_2, \dots, (x_{n,1}, x_{n,2}) \rightarrow y_n\}$ Unsupervised: $\{(x_{1,1}, x_{1,2}), (x_{2,1}, x_{2,2}), \dots, (x_{n,1}, x_{n,2})\}$

Introduction

k-means

DBSCAN

Gaussian Mixture Models

Stephan Sigg February 9, 2022 6 / 22

k-means algorithm

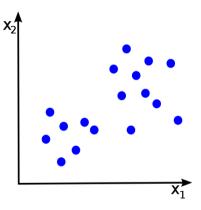
k-means algorithm

Iteratively find k clusters in the data

Init Randomly choose *k* points as initial cluster centroids

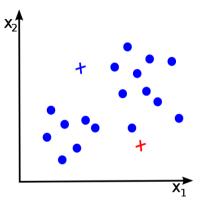
Repeat :

- → Assign data points x_i , $i \in \{1..n\}$ to these cluster centroids conditioned on distance: $C_i = \{x_i | c_i \text{ is nearest centroid to } x_i\}$
- $\rightarrow\,$ Move cluster centroids to the center weight of the points associated to them



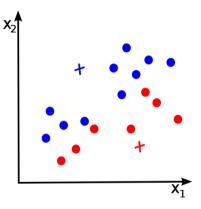
k-means algorithm

Init: k cluster centroids c_i chosen randomly



k-means algorithm

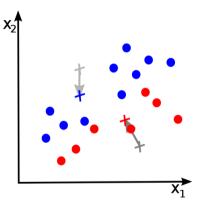
Init: k cluster centroids c_i chosen randomly Repeat:



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

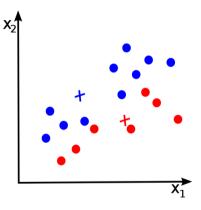
2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

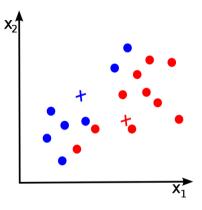
2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

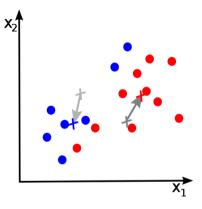
2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

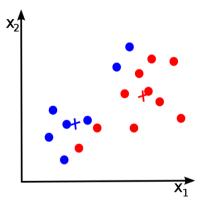
2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

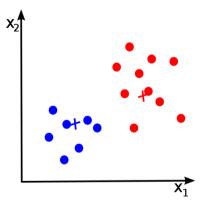
2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

Init: k cluster centroids *c_i* chosen randomly Repeat:

2:
$$c_j(t+1) = \frac{1}{|C_j|} \sum_{i=1}^{|C_j|} x_i$$



k-means algorithm

How to randomly initialise the k-means algorithm

- The k-means algorithm may compute different solutions for different initial choice of cluster centroids
- With respect to the overall distance of the samples to their cluster centroids, k-means might run into local optima

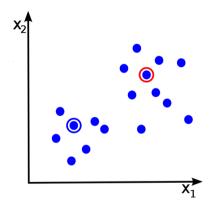
k-means algorithm

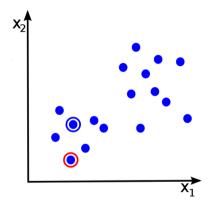
How to randomly initialise the k-means algorithm

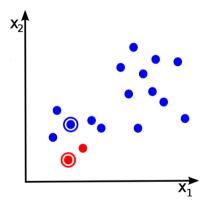
The k-means algorithm may compute different solutions for different initial choice of cluster centroids

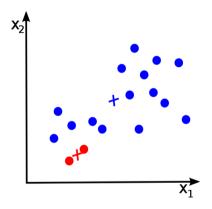
With respect to the overall distance of the samples to their cluster centroids, k-means might run into local optima

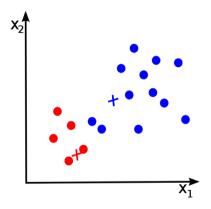
Common choice of the initial *k* cluster centroids Choose the initial *k* cluster centroids randomly from the set of training samples

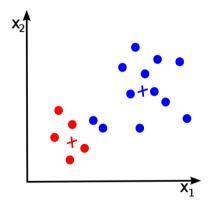


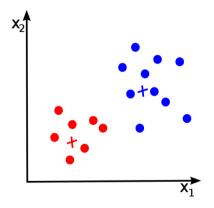




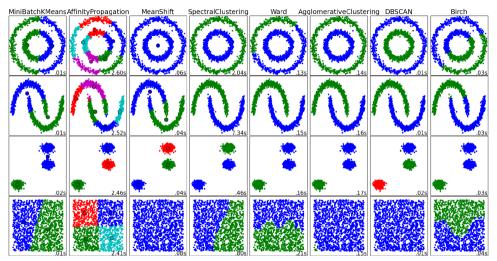








Overview clustering algorithms



Introduction

k-means

DBSCAN

Gaussian Mixture Models

Stephan Sigg February 9, 2022 11 / 22

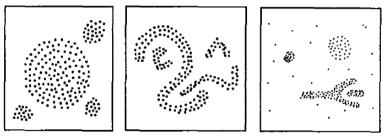
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

Requirements for a clustering algorithm

- Minimal required domain knowledge
- Discovery of clusters with arbitrary shape
- Good efficiency on large data sets

Define cluster:

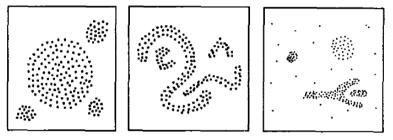
Each cluster has a typical density of points which is considerably higher than outside of the cluster¹



¹Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI

Define cluster:

Each cluster has a typical density of points which is considerably higher than outside of the cluster¹

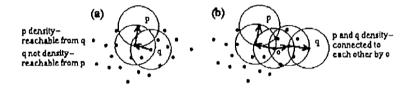


Concept: Density in the neighbourhood has to exceed some threshold such that a point is considered inside a cluster

¹Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI

Density-reachable

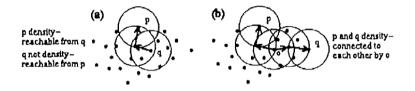
Given a Neighbourhood $\mathcal{N}(x)$ and a density function $\mathcal{D}(\mathcal{N}(x))$, a point p_1 is *density-reachable* from a point p_n if there is a chain of points p_1, \ldots, p_n such that $p_{i+1} \in \mathcal{N}(p_i)$ and $\mathcal{D}(\mathcal{N}(p_i))$ exceeds a certain threshold τ^2



²Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI

Density-reachable

Given a Neighbourhood $\mathcal{N}(x)$ and a density function $\mathcal{D}(\mathcal{N}(x))$, a point p_1 is *density-reachable* from a point p_n if there is a chain of points p_1, \ldots, p_n such that $p_{i+1} \in \mathcal{N}(p_i)$ and $\mathcal{D}(\mathcal{N}(p_i))$ exceeds a certain threshold τ^2

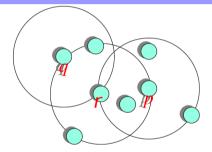


Density-connected

Two points p_1 and p_n are *density-connected*, if there is a point $r \in C$ such that both p_1 and p_n are density-reachable from r

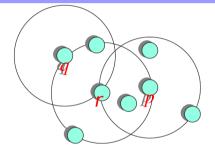
²Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI

Density-reachable and density-connected



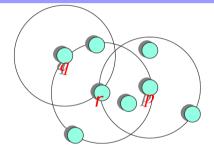
Stephan Sigg February 9, 2022 15 / 22

Density-reachable and density-connected



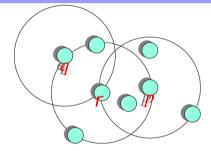
• *q* is density-reachable from *p*

Density-reachable and density-connected



- *q* is density-reachable from *p*
- *p* is <u>not</u> density-reachable from *q* (low density around *q*)

Density-reachable and density-connected



- *q* is density-reachable from *p*
- *p* is <u>not</u> density-reachable from *q* (low density around *q*)
- *q* and *p* are density-connected via *r*

DBSCAN algorithm

- Start with an arbitrary point *p*
- Retrieve all points density-reachable from p
 - If p is an inner point, this procedure yields a cluster
 - If *p* is a border point, no points are density-reachable from *p* visit the next point in the data.

DBSCAN algorithm

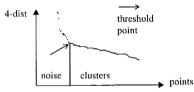
- Start with an arbitrary point *p*
- Petrieve all points density-reachable from p
 - If p is an inner point, this procedure yields a cluster
 - If *p* is a border point, no points are density-reachable from *p* visit the next point in the data.

Need for recalculation with lower density for found clusters

Since the density Δ has to be chosen beforehand, it might happen that two clusters C_1 and C_2 with density higher than Δ are detected as one cluster (if for $c_1 \in C_1$ and $c_2 \in C_2$ it is $c_2 \in \mathcal{N}(c_1)$

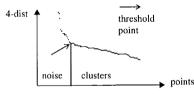
Manually detect density of lowest density cluster:

Plot the *k*-distance graphs for various values of *k*



Manually detect density of lowest density cluster:

Plot the *k*-distance graphs for various values of *k*

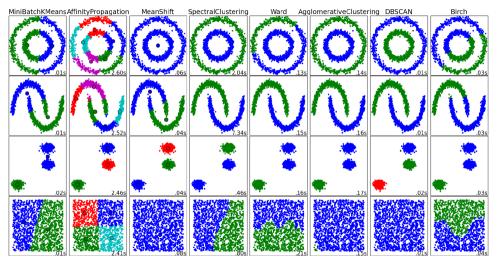


k-distance graph

A k-distance graph is an ordered mapping of each point to the distance from its k-th nearest neighbour.

Points in clusters will achieve similar values while there is a threshold point that indicates points outside all clusters.

Overview clustering algorithms



Introduction

k-means

DBSCAN

Gaussian Mixture Models

Stephan Sigg February 9, 2022 19 / 22

Gaussian Mixture Models

Stephan Sigg February 9, 2022 20 / 22

Questions?

Stephan Sigg stephan.sigg@aalto.fi

> Si Zuo si.zuo@aalto.fi

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

