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Learning goals

Understand the concepts of
@ unsupervised learning
@ clustering
@ k-means
e DBSCAN
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Summary supervised classification algorithms

Input data Nearest Neighbors Linear SVM RBF SVM Gaussian Process Decision Tree Random Forest Meural Net AdaBoost Naive Bayes
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QDA: Quadratic Discriminant Analysis
AdaBoost: combine ‘'weak learners’; subsequent learners trained in favor of previous misclassified instances
RBF: Radial Basis Function
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Unsupervised learning
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Supervised: {(x1.1,X12) = y1,(Xe,1,X22) = Y2, ..., (Xn1, Xn2) = Yn}
Unsuperwsed: {(X171 , X4 ,2), (X2’1 , ngg), cee (Xn71 , Xnyg)}
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Unsupervised learning
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Supervised: {(X1’1 , X4 ’2) — W, (X2,1 ) X2,2) — Y2,

Unsupervised: {(X171 , X4 ,2), (X2’1 , ngg), cee (Xn71 , Xnyg)}

ceey (Xn,17xn,2) — Yn}
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Unsupervised learning

k-means algorithm

k-means algorithm
Iteratively find k clusters in the data

Init Randomly choose k points as initial cluster
centroids
Repeat :

— Assign data points x;, i € {1..n} to these cluster centroids
conditioned on distance: C; = {x;|c; is nearest centroid to x;}

— Move cluster centroids to the center weight of the points

associated to them

Xy
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Unsupervised learning

k-means algorithm

Init: k cluster centroids ¢; chosen randomly
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Unsupervised learning

k-means algorithm
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Init: k cluster centroids ¢; chosen randomly o ©
Repeat: () ¢
1: assign data points x; to centroids C; o % o °
conditioned on distance . ° +
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Unsupervised learning

k-means algorithm

xA
°
Init: k cluster centroids ¢; chosen randomly Y .’ ®
Repeat: ¥ oo
. . . °
1: assign data points x; to centroids C; ® ® °
conditioned on distance o' ® X
¢ °
2: gt +1) = & i x °
X7
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Unsupervised learning

k-means algorithm

xA
°
Init: k cluster centroids ¢; chosen randomly Y .’ ®
Repeat: + o ®
. . . °
1: assign data points x; to centroids C; L o + °
conditioned on distance ° ® Te o
C; )
2: gt+1) = 1 T % o
X
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Unsupervised learning

k-means algorithm

xA
°
Init: k cluster centroids ¢; chosen randomly Y .' °
Repeat: + o ®
. . . °
1: assign data points x; to centroids C; L o + °
conditioned on distance ° ® Te o
C; )
2: gt+1) = 1 T % o
X

L
Aalto University T hiont Tiephan S1g0
School of Electrical ‘ mpoient February 9, 2022
Engineering 7122



Unsupervised learning

k-means algorithm

xA
°
Init: k cluster centroids ¢; chosen randomly Y .' ®
Repeat: ®
. . . °
1: assign data points x; to centroids C; o of® Z. °
conditioned on distance PY ®
¢ °
2: gt +1) = & i x .
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Unsupervised learning

k-means algorithm

xA
Init: k cluster centroids ¢; chosen randomly o o °® o
Repeat: °
1: assign data points x; to centroids C; ° * %o
conditioned on distance or® ®
c °
2: Cj(l‘+1)=|(13j21-:j|1xi o’
Xy
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Unsupervised learning

k-means algorithm

xA
Init: k cluster centroids ¢; chosen randomly o ° °® o
Repeat: °
1: assign data points x; to centroids C; ° * %o
conditioned on distance or®% o ®
c °
2: Cj(l‘+1)=|(13j21-:j|1xi o’
Xy
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Unsupervised learning

k-means algorithm

How to randomly initialise the k-means algorithm
The k-means algorithm may compute different solutions for different
initial choice of cluster centroids

With respect to the overall distance of the samples to their cluster
centroids, k-means might run into local optima
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Unsupervised learning

k-means algorithm

How to randomly initialise the k-means algorithm
The k-means algorithm may compute different solutions for different
initial choice of cluster centroids

With respect to the overall distance of the samples to their cluster
centroids, k-means might run into local optima

Common choice of the initial k cluster centroids
Choose the initial k cluster centroids randomly from the set of training
samples

—-—
Aalto University ~ Tiephan S1g0
School of Electrical ‘ 1K February 9, 2022
Engineering 8/22



Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Unsupervised learning

k-means algorithm
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Overview clustering algorithms

MiniBatchKMeans AffinityPropagation MeanShift

SpectralClustering

Ward  AgglomerativeClustering DBSCAN
N = 7.8
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Density-Based Spatial Clustering of Applications

with Noise (DBSCAN)

Requirements for a clustering algorithm
@ Minimal required domain knowledge
@ Discovery of clusters with arbitrary shape
@ Good efficiency on large data sets
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DBSCAN

Define cluster:
Each cluster has a typical density of points which is considerably higher
than outside of the cluster’

1 Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
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DBSCAN

Define cluster:
Each cluster has a typical density of points which is considerably higher
than outside of the cluster’
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Joncept: Density in the neighbourhood has to exceed some threshold such

____that a point is considered inside a cluster

1 Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
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Density-reachable

Given a Neighbourhood A/ (x) and a density function D(N(x)), a point p; is
density-reachable from a point pj, if there is a chain of points ps, .. ., p, such that
pir1 € N(p;) and D(N(p;)) exceeds a certain threshold 7 2

® D
K OES

p and g density-
connacted to
cachotherbyo

@
p density-
reachablefromgq o

qnat density - -
reachablefromp o

2Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
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Density-reachable

Given a Neighbourhood A/ (x) and a density function D(N(x)), a point p; is
density-reachable from a point pj, if there is a chain of points ps, .. ., p, such that
pir1 € N(p;) and D(N(p;)) exceeds a certain threshold 7 2

p and g density-
connacted to
cachotherbyo

@
p density-
reachablefromgq o

qnat density - -
reachablefromp o

Density-connected

Two points p; and p,, are density-connected, if there is a point r € C such that both p;
and p, are density-reachable from r

2Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
Stephan 168
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DBSCAN - examples

Density-reachable and density-connected
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DBSCAN - examples

Density-reachable and density-connected

@ g is density-reachable

from p
— -
A Jimbient rona s
» Engineering 15/22



DBSCAN - examples

Density-reachable and density-connected

@ g is density-reachable
from p

@ pis not density-reachable
from g (low density around q)
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DBSCAN - examples

Density-reachable and density-connected

@ g is density-reachable
from p

@ pis not density-reachable
from g (low density around q)

@ gand p are
density-connected via r
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DBSCAN

@ Start with an arbitrary point p
© Retrieve all points density-reachable from p

@ If pis an inner point, this procedure yields a cluster
@ If pis a border point, no points are density-reachable from p - visit the next
point in the data.
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DBSCAN

@ Start with an arbitrary point p
© Retrieve all points density-reachable from p

@ If pis an inner point, this procedure yields a cluster
@ If pis a border point, no points are density-reachable from p - visit the next
point in the data.

Need for recalculation with lower density for found clusters

Since the density A has to be chosen beforehand, it might happen that two clusters C;
and C, with density higher than A are detected as one cluster (if for ¢; € C; and ¢; € Co
itis co € N(cy)

tephan Sigg
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DBSCAN

Manually detect density of lowest density cluster:
Plot the k-distance graphs for various values of k

4-di
-dis! N
t i threshold
- point
noise clusters .
» points
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DBSCAN

Manually detect density of lowest density cluster:

Plot the k-distance graphs for various values of k

—_—>
threshold
point

4-dist

A

noise clusters .
» points

k-distance graph
A k-distance graph is an ordered mapping of each point to the distance from its k-th
nearest neighbour.

Points in clusters will achieve similar values while there is a threshold point that
indicates points outside all clusters.
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Overview clustering algorithms

MiniBatchKMeans AffinityPropagation MeanShift

SpectralClustering

Ward  AgglomerativeClustering DBSCAN
N = 7.8
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Gaussian Mixture Models
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Questions?

Stephan Sigg
stephan.sigg@aalto.fi

Si Zuo
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