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Learning goals

Understand the concepts of
unsupervised learning
clustering
k-means
DBSCAN
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Summary supervised classification algorithms

QDA: Quadratic Discriminant Analysis
AdaBoost: combine ’weak learners’; subsequent learners trained in favor of previous misclassified instances

RBF: Radial Basis Function
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Unsupervised learning

Supervised: {(x1,1, x1,2) → y1, (x2,1, x2,2) → y2, . . . , (xn,1, xn,2) → yn}
Unsupervised: {(x1,1, x1,2), (x2,1, x2,2), . . . , (xn,1, xn,2)}
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Unsupervised learning
k-means algorithm

k-means algorithm
Iteratively find k clusters in the data
Init Randomly choose k points as initial cluster

centroids
Repeat :

→ Assign data points xi , i ∈ {1..n} to these cluster centroids
conditioned on distance: Cj = {xi |cj is nearest centroid to xi}

→ Move cluster centroids to the center weight of the points
associated to them
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Init: k cluster centroids ci chosen randomly
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Unsupervised learning
k-means algorithm

How to randomly initialise the k-means algorithm
The k-means algorithm may compute different solutions for different
initial choice of cluster centroids
With respect to the overall distance of the samples to their cluster
centroids, k-means might run into local optima

Common choice of the initial k cluster centroids
Choose the initial k cluster centroids randomly from the set of training
samples
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Overview clustering algorithms
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Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)

Requirements for a clustering algorithm
Minimal required domain knowledge
Discovery of clusters with arbitrary shape
Good efficiency on large data sets
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DBSCAN
Define cluster:
Each cluster has a typical density of points which is considerably higher
than outside of the cluster1

Concept: Density in the neighbourhood has to exceed some threshold such
that a point is considered inside a cluster

1Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
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Density-reachable

Given a Neighbourhood N (x) and a density function D(N (x)), a point p1 is
density-reachable from a point pn if there is a chain of points p1, . . . ,pn such that
pi+1 ∈ N (pi ) and D(N (pi)) exceeds a certain threshold τ 2

Density-connected

Two points p1 and pn are density-connected, if there is a point r ∈ C such that both p1
and pn are density-reachable from r

2Ester et al.: A Density-Based Algorithms for Discovering Clusters, AAAI
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DBSCAN – examples

Density-reachable and density-connected

q is density-reachable
from p
p is not density-reachable
from q (low density around q)

q and p are
density-connected via r
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DBSCAN
DBSCAN algorithm

1 Start with an arbitrary point p
2 Retrieve all points density-reachable from p

If p is an inner point, this procedure yields a cluster
If p is a border point, no points are density-reachable from p - visit the next
point in the data.

Need for recalculation with lower density for found clusters

Since the density ∆ has to be chosen beforehand, it might happen that two clusters C1
and C2 with density higher than ∆ are detected as one cluster (if for c1 ∈ C1 and c2 ∈ C2
it is c2 ∈ N (c1)
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DBSCAN
Manually detect density of lowest density cluster:
Plot the k -distance graphs for various values of k

k -distance graph
A k -distance graph is an ordered mapping of each point to the distance from its k -th
nearest neighbour.

Points in clusters will achieve similar values while there is a threshold point that
indicates points outside all clusters.
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Gaussian Mixture Models
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Questions?
Stephan Sigg

stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi
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