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Learning goals

Understand the concepts of
feature engineering
feature selection
challenges with high dimensional feature spaces
Principle Component Analysis
Kernel methods
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Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods
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Feature engineering

.

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Simple normalization: Scaling
For each sample xi from a set X , compute
the scaled value as

x ′i =
xi −min(X )

max(X )−min(X )

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Simple normalization: Scaling
For each sample xi from a set X , compute
the scaled value as

x ′i =
xi −min(X )

max(X )−min(X )

after scaling, it is common to center
the values around e.g. 0 or their
arithmetic mean, median, centre of
mass etc.

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Standardization to zero mean/unit variance
Given a set of values xi ; i ∈ {1..n} from a
set X with mean µ and standard deviation
σ, we derive the standardized values x ′i as

x ′i =
xi − µ
σ

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Standardization to zero mean/unit variance
Given a set of values xi ; i ∈ {1..n} from a
set X with mean µ and standard deviation
σ, we derive the standardized values x ′i as

x ′i =
xi − µ
σ

Using the variance σ2 instead of σ is
called variance scaling

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Important:

When normalizing on the training set input,
this need to be applied identically ot the
test set input. Do not normalize the test set
input on the test set data.

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly
depart from the rest.

Example: In insurance, most claims are
small but a few are large.
Removing the large claims
will completely invalidate an
insurance model.

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?



Stephan Sigg
February 14, 2022

4 / 21

Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly
depart from the rest.

Example: In insurance, most claims are
small but a few are large.
Removing the large claims
will completely invalidate an
insurance model.

Caution: Do not throw away outliers,
unless you have evidence
that they are errors

Darell Huff, How to lie with Statistics, 1954

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly
depart from the rest.

Approach: If outliers are present, use
algorithms that are robust to
outliers. For instance,
covarianceor mean are
sensitive to outliers. →
replace mean with median.

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly
depart from the rest.

→ Outliers behave sometimes
different than the rest→ train
separate model on outliers

Detection clustering, density estimation,

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature engineering

Example: walking speed vs. heart rate

Feature pre-processing
→ Normalisation
→ Detection of outliers
→ Are features independent?
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Feature Selection
A large portion of the performance of Machine Learning algorithms
is due to the right choice and processing of features.

Avoid non-important features
Noisy data
Non-correlation between features and classes
Correlated features
Sometimes, less is better

Choosing the most important features
Reduces training and evaluation time
Reduces complexity of a model (easier to interpret)
Improves prediction/recall of a model
Reduces overfitting
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

. .
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Las Vegas Filter
Repeatedly generate random feature subsets {X}s ⊆ X}, train a
classifier ĥs(

−→
ŵs, ·) = mini∈{Xs}L

(
h(−→w ,

−→x (i)), y (i)
)

and validate ĥs(
−→
ŵs, ·)

for its classification performance

. .
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Focus algorithm
1 Train and evaluate a classifier for

singleton feature Xo

2 Evaluate each set of two features
Xo,Xp

...
Until consistent solution is found

. .
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Focus algorithm
1 Train and evaluate a classifier for

singleton feature Xo

2 Evaluate each set of two features
Xo,Xp

...
Until consistent solution is found

Complexity:

(
|X |
k

)
=

|X |!
(|X | − k)!(k !)

→ O(2|X |)(
|X |
1

)
·
(
|X |
2

)
· · ·
(
|X |
|X |

)

. .
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Relief algorithm
Given a collection of values xi ; i ∈ {1..n} of a feature X , compute

Closest distance to all other samples of the same class
Closest distance to all samples not in that class

Rationale: Feature more relevant the more it separates a sample from samples in
other classes and the less it separates from samples in same class

. .
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Feature selection algorithms
How to identify good/meaningful features?

Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Pearson Correlation Coefficient

r(X1,X2) =
Cov(X1,X2)√

Var(X1)Var(X2)

Identifies linear relation between
features Xi

. .
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Feature selection
For a set of features {X}, how to find a good subset {X}s ⊆ X} which is best suited to
distinguish between the considered classes Yi ∈ {Y}?

Pearson Correlation Coefficient
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Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods
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Issues related to high dimensional input data
Exponential growth Volume of the space grows exponentially with dimension

Counter-intuitive properties in higher dimensional spaces
Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space
(Problematic for methods that require statistical significance)

Example – Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
Fraction of the volume between radius r = 1 and r ′ = 1− ε?

Volume of shpere with radius r :

VD(r) = δDrD for appropriate δD

Given by

VD(1)− VD(1− ε)
VD(1)

= 1− (1− ε)D

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Hughes (peaking) phenomenon

Predictive power of classifier first
increases with dimension, then
decreases

Example – Gaussian distribution

Probability mass concentrated in a thin shell
(here plotted as distance from the origin in a polar coordinate system)

Curse of Dimensionality

Mechanisms to efficiently reduce dimensions
or classifiers that respect properties of
high-dimensional spaces required.
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Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods
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Principle Component Analysis
Principal Component Analysis
Find lower dimensional surface onto which to project the data
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Principle Component Analysis

PCA finds k vectors −→u1, . . . ,
−→uk onto which to project the data such that the

projection error is minimized.

→ In particular, find −→zi = z(1)
i . . . z(n)

i to represent the −→xi = x (1)
i . . . x (n)

i in
this k-dimensional vector space spanned by the −→ui
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Principle Component Analysis

1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])

2 The pricipal components are found by computing the eigenvectors
and eigenvalues of C (solving (C − λIm)u = 0)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis

1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])

2 The pricipal components are found by computing the eigenvectors
and eigenvalues of C (solving (C − λIm)u = 0)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis
1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])

2 The pricipal components are found by computing the eigenvectors
and eigenvalues of C (solving (C − λIm)u = 0)

Covariance
A measure of spread of a set of points around their center of mass

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis

1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors

and eigenvalues of C (solving (C − λIm)u = 0)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis

1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors

and eigenvalues of C (solving (C − λIm)u = 0)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis

1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors

and eigenvalues of C (solving (C − λIm)u = 0)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis
1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors

and eigenvalues of C (solving (C − λIm)u = 0)

Eigenvectors and Eigenvalues
The (orthogonal) eigenvectors are sorted by their eigenvalues with
respect to the direction of greatest variance in the data.

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis
1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors

and eigenvalues of C (solving (C − λIm)u = 0)

3 Choose the k eigenvectors with largest eigenvalues to represent the
projection space U

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

12 / 21

Principle Component Analysis
1 Compute the covariance matrix from the x (i):

C =
1
n

X︸︷︷︸
n×m-dim.

X T︸︷︷︸
m×n-dim.︸ ︷︷ ︸

m×m-dim.

(We assume that all features are mean-normalized and scaled into [0,1])
2 The pricipal components are found by computing the eigenvectors
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4 These k eigenvectors in U are used to transform the inputs xi to zi :

z(i) = UT x (i)

When a matrix C is multiplied with a vector u′, this usually
results in a new vector Cu′ of different direction than u′.

→ There are few vectors u, however, which have the same
direction (Cu = λu).
These are the eigenvectors of C and λ are the eigenvalues



Stephan Sigg
February 14, 2022

13 / 21

Principle Component Analysis
How to choose the number k of dimensions?

We can calculate

Average squared projection error
Total variation in the data

→
∑k

i=1 ||x (i) − x (i)
approx||2

1
m

∑m
i=1 ||x (i)||2

as the accuracy of the projection using k principle components as a
function of the eigenvalues∑k

i=1
√
λi∑m

j=1

√
λj

= d

We say that 100 · (1− d)% of variance is retained.
(Typically, d ∈ [0.01,0.05] )
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Outline

Feature Engineering

Strategies to cope with common challenges

Principle Component Analysis

Kernel methods
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Strategies to cope with non-linear problems
Classifier may search an objective function of sufficient dimension

Alternative for complex non-linear decision boundaries:

Change dimension of input space so that linear separation is possible
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Example: Mapping into linear separable space
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Using a kernel function

σ controls the width of the Gaussian

Example: w0 = −0.5,w1 = 1,w2 = 1,w3 = 0
h(x) = w0 + w1k(x , l1) + w2k(x , l2) + w3k(x , l3)
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Using a kernel function

⇒ w0 + w1k1 + w2k2 + w3k3 + . . .

Kernel Define kernel via landmarks

σ controls the width of the Gaussian

Example: w0 = −0.5,w1 = 1,w2 = 1,w3 = 0
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Using a kernel function
Kernels – placement of landmarks

Possible choice of initial landmarks: All training-set samples
Training of wi

fi =

 k(xi , l1)
...

k(xi , lm)



min
W

C
m∑

i=1

yicostyi=1(W T fi) + (1− yi) · costyi=0(W T fi) +
1
2

m∑
j=1

w2
j
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Questions?
Stephan Sigg

stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi
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