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Learning goals

Understand the concepts of
@ feature engineering
@ feature selection
@ challenges with high dimensional feature spaces
@ Principle Component Analysis
@ Kernel methods
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Outline

Feature Engineering
Strategies to cope with common challenges
Principle Component Analysis

Kernel methods

L
Aalto University H tephan Sigg
A School of Electrical ‘ mbient February 14, 2022

Engineering 3/21



Feature engineering

Feature pre-processing
— Normalisation
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Feature engineering

Simple normalization: Scaling
For each sample x; from a set X', compute Feature pre-processing
the scaled value as _. Normalisation

, Xj — min(X)

i = max(X’) — min(X)
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Feature engineering

Simple normalization: Scaling
For each sample x; from a set X', compute
the scaled value as
) Xi — min(X) Feature pre-processing
Xi = max(X) — min(X) — Normalisation

after scaling, it is common to center
the values around e.g. 0 or their
arithmetic mean, median, centre of
mass etc.
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Feature engineering

Standardization to zero mean/unit variance
Given a set of values x;;i € {1..n} from a

set X with mean . and standard deviation Feature pre-processing
o, we derive the standardized values x; as — Normalisation
X,'/ _ Xi—
g
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Feature engineering

Standardization to zero mean/unit variance

Given a set of values x;;i € {1..n} from a

set X with mean p and standard deviation

o, we derive the standardized values x/ as Feature pre-processing

— Normalisation

Using the variance o2 instead of o is
called variance scaling

tephan S1gg
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Feature engineering

Important: .
Feature pre-processing

When normalizing on the training set input, _. Normalisation
this need to be applied identically ot the

test set input. Do not normalize the test set

input on the test set data.

tephan S1gg
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Feature engineering

Apply PCA Feature pre-processing

— Detection of outliers

Apply PCA
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Feature engineering

Common pitfalls in outlier handling:

It is not unusual to find values that clearly

depart from the rest.

Example: In insurance, most claims are

small but a few are large.
Removing the large claims
will completely invalidate an
insurance model.

Feature pre-processing

— Detection of outliers

tephan Sigg
February 14, 2022
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Feature engineering

Common pitfalls in outlier handling:

It is not unusual to find values that clearly
depart from the rest.

Example: In insurance, most claims are Feature pre-processing
small but a few are large.

Removing the large claims
will completely invalidate an
insurance model.

Caution: Do not throw away outliers,
unless you have evidence
that they are errors

— Detection of outliers

Darell Huff, How to lie with Statistics, 1954
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Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly

depart from the rest. Feature pre-processing
Approach: If outliers are present, use
algorithms that are robust to . Detection of outliers

outliers. For instance,
covarianceor mean are
sensitive to outliers. —
replace mean with median.
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Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly Feat .
depart from the rest. ealure pre-processing

— Outliers behave sometimes
different than the rest — train
separate model on outliers

Detection clustering, density estimation,

— Detection of outliers
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Feature engineering

Example: walking speed vs. heart rate
O i P e Feature pre-processing

& ©BCG @ cardil apes (V. ICS left)
BCG @ backbone (6/7Th) - BCGsens @ cardiac apex
@BCG @ A radialis (left) - BCGsens @ a. radialis

©BCG @ ATemporals (L teuple) ' - BCG-Core (Zedboard)
|
"T«;—‘ : ® (R)right arm
: g .
s . (@t — Are features independent?
VoIS — w=’y S@enix
6 ~C 2
1 Qeomd
!
.
)

(a) Positioning of the sensors

—
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Feature Selection

e o
A large portion of the performance of Machine Learning algorithms ,:.-‘.-::2’
is due to the right choice and processing of features. e ‘
Avoid non-important features _1’-""
@ Noisy data y X
@ Non-correlation between features and classes AL "
@ Correlated features z’?:- * -.:"-_.'.
@ Sometimes, less is better e *a e
S
Ha oo . ® "o
.o.- ° .. Jo me
n o

tephan Sigg
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Feature Selection

X oo

A large portion of the performance of Machine Learning algorithms ::,-‘.-::33.
is due to the right choice and processing of features. . =' .*

@ Noisy data AA_.—%’

@ Non-correlation between features and classes ", '_

@ Correlated features 0:.5:: " g

@ Sometimes, less is better .y tw e

@ Reduces training and evaluation time o ons e

@ Reduces complexity of a model (easier to interpret) L L *

@ Improves prediction/recall of a model H s f ..".

@ Reduces overfitting o0 w e
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Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?
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Feature selection algorithms
How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ) € {V}?

Las Vegas Filter
Repeatedly generate random feature subsets {X'}s C X'}, train a

aps 2 T> . — . . . A 7)
classifier hs(Ws, -) = minjc v,y £ (h(W, X D), y)) and validate hs(ws, -)
for its classification performance

Tiephan 8190
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Feature selection algorithms @

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Focus algorithm
1 Train and evaluate a classifier for
singleton feature X,

2 Evaluate each set of two features
Xo, Xp

_Until consistent solution is found
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Focus algorithm .
Complexity:
1 Train and evaluate a classifier for
singleton feature X, |
SoL I W (i N o(2*h
2 Evaluate each set of two features k (X[ = K)I(k1)

:Xo,xp (|/1v|>,<|»2<|>...<Ij§}>

Until consistent solution is found
— Stophan 5100
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Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Relief algorithm
Given a collection of values x;; i € {1..n} of a feature X', compute

Closest distance to all other samples of the same class
Closest distance to all samples not in that class

Rationale: Feature more relevant the more it separates a sample from samples in
other classes and the less it separates from samples in same class
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Relief algorithm
Given a collection of values x;; i € {1..n} of a feature X', compute

Closest distance to all other samples of the same class Complexity:
Closest distance to all samples not in that class O (|x]- n?)

Rationale: Feature more relevant the more it separates a sample from samples in
other classes and the less it separates from samples in same class
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to

distinguish between the considered classes ); € {V}?

Pearson Correlation Coefficient

o COV(X1 , Xg)
 /Var(Xy)Var(Xs)

r(Xy, Xs)

@ |dentifies linear relation between
features X;

mop
@ =
3
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Pearson Correlation Coefficient

COV(X1 , Xg)

(A, 42) = v/ Var(Xy)Var(&,)

@ |dentifies linear relation between
features X;

X

mop
@ =
3

22¢c|
2

32
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to

distinguish between the considered classes ); € {V}?

Pearson Correlation Coefficient

COV(X1 , Xg)
\/Var(X1 )Val’(Xg)

r(Xy, Xp) =

@ |dentifies linear relation between
features X

All features

should follow x| Ju%°

a normal
distribution

Data should
have no
significant

..(® outliers

A

9oUelIBAOD  3DOUBLIBAOD  9d2UBRLIBAOD

X

o=
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Feature selection algorithms

How to identify good/meaningful features?
Feature selection

For a set of features {X'}, how to find a good subset {X'}s C X'} which is best suited to
distinguish between the considered classes ); € {V}?

Pearson Correlation Coefficient

COV(X1 , Xg)
v/ Var(X;)Var(Xz)

r(Xy, Xz) =

@ |dentifies linear relation between
features X;

POSItlve r
0.4

/ﬁ

Negatlve r

\*ﬁ%
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Outline

Feature Engineering
Strategies to cope with common challenges
Principle Component Analysis

Kernel methods
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space
(Problematic for methods that require statistical significance)
;;:21[
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space
(Problematic for methods that require statistical significance)

Tob

Hughes (peaking) phenomenon ' N
Predictive power of classifier first |
increases with dimension, then AT I:| N
" a
decreases 7 '
1 1 1 } 3:1‘ I-'LL %2

L
Aalto University 2 lephan Sigg
A School of Electrical ‘ mbient February 14, 2022

Engineering 8/21



Issues related to high dimensional input data <

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces

Example — Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces

Example — Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
Fraction of the volume between radius r=1and r' =1 —&?
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces

Example — Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
Fraction of the volume between radius r=1and r' =1 —&?

Volume of shpere with radius r:

Vp(r) = sprP for appropriate dp
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces

Example — Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
Fraction of the volume between radius r=1and r' =1 —&?

Volume of shpere with radius r: Given by

Vp(r) = spr® for appropriate p Vo(1) ; \(/10)(1 —¢) =1-(1- 8)D
D
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Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension
Counter-intuitive properties in higher dimensional spaces

Example — Volume of a sphere

Consider a sphere of radius r = 1 in a D-dimensional space
Fraction of the volume between radius r=1and r' =1 —&?
Volume of shpere with radius r: Given by

VD(1) — VD(1 — 6)
Vb(1)

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Vp(r) = sprP for appropriate dp =1-(1- 5)0

ephan Sigg
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Issues related to high dimensional input data

Example — Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)
2
:;:21[
p=t A7
D=2 raf
S
1
s D =20 ¥ (]
a7y
.
1 1 1 1 > >
0 ——— o i o
Al Bttt Jimbient
Engineering
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Issues related to high dimensional input data

Example — Gaussian distribution

Probability mass concentrated in a thin shell

(here plotted as distance from the origin in a polar coordinate system)
2 : : :
Curse of Dimensionality
D=1 . " : .
Mechanisms to efficiently reduce dimensions
. D=2 or classifiers that respect properties of
= 1 D=3 high-dimensional spaces required.
0
0 2

—
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Outline

Feature Engineering
Strategies to cope with common challenges
Principle Component Analysis

Kernel methods

L
Aalto University H tephan Sigg
A School of Electrical ‘ mbient February 14, 2022

Engineering 9/21



Principle Component Analysis

Principal Component Analysis
Find lower dimensional surface onto which to project the data
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Principle Component Analysis

Principal Component Analysis
Find lower dimensional surface onto which to project the data
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Principle Component Analysis

Principal Component Analysis
Find lower dimensional surface onto which to project the data
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Principle Component Analysis

Principal Component Analysis
Find lower dimensional surface onto which to project the data

V. Xl}
—0—0—0—0—>
U
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Principle Component Analysis @

PCA finds k vectors Uf, e LTK onto which to project the data such that the
projection error is minimized.
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Principle Component Analysis

PCA finds k vectors Uf, e Uf{ onto which to project the data such that the
projection error is minimized.

— In particular, find Zj = (1) : ( ) to represent the X; = x,.“) . .x,.(”) in
this k-dimensional vector space spanned by the 7
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Principle Component Analysis

@ Compute the covariance matrix from the x(:

1

- X X7
n ~~ ~~
nx m-dim.mx n-dim.

" J

TV .
mx m-dim.

C:

(We assume that all features are mean-normalized and scaled into [0, 1])
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Principle Component Analysis

@ Compute the covariance matrix from the x(:

1

- X X7
n ~~ ~~
nx m-dim.mx n-dim.

" J

TV .
mx m-dim.

C:

(We assume that all features are mean-normalized and scaled into [0, 1])

n m
———————— JR—

covariance

]

variance
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Principle Component Analysis
@ Compute the covariance matrix from the x(:

C= X X7
~— ~—~
nx m-dim.mx n-dim.

N S/

TV .
mx m-dim.

1
n

(We assume that all features are mean-normalized and scaled into [0, 1])

Covariance
A measure of spread of a set of points around their center of mass
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Principle Component Analysis

@ Compute the covariance matrix from the x(:

1

- X X7
n ~~ ~~
nx m-dim.mx n-dim.

" J

TV .
mx m-dim.

C:

(We assume that all features are mean-normalized and scaled into [0, 1])

@ The pricipal components are found by computing the eigenvectors
and eigenvalues of C (sowving (¢ — A1,)u = 0)
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Princiﬁle Comﬁonent Analxsis

When a matrix C is multiplied with a vector «/, this usually
results in a new vector Cu’ of different direction than u'.
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Princiﬁle Comﬁonent Analxsis

When a matrix C is multiplied with a vector «/, this usually
results in a new vector Cu’ of different direction than v'.

— There are few vectors u, however, which have the same
direction (Cu = A\u).

These are the eigenvectors of C and )\ are the eigenvalues




Principle Component Analysis  * .
@ Compute the covariance matrix from the x(; = L

1

®) f © O
2 % F] \
L L

f fy f

C=- X X7
n ~~ ~~

nx m-dim.mx n-dim.

N J/
-~

mx m-dim.

(We assume that all features are mean-normalized and scaled into [0, 1])
@ The pricipal components are found by computing the eigenvectors
and eigenvalues of C (sowing (¢ — A1)u —0)

Eigenvectors and Eigenvalues

The (orthogonal) eigenvectors are sorted by their eigenvalues with
respect to the direction of greatest variance in the data.
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Principle Component Analysis
@ Compute the covariance matrix from the x(:

1

C=- X X7
n ~~ ~~~
nx m-dim.mx n-dim.

. J

mx r;tdim.
(We assume that all features are mean-normalized and scaled into [0, 1])

@ The pricipal components are found by computing the eigenvectors
and eigenvalues of C (sowving (¢ — A1,)u = 0)

© Choose the k eigenvectors with largest eigenvalues to represent the
projection space U
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Principle Component Analysis

@ Compute the covariance matrix from the x(:

1

C=- X X7
n ~~ ~~~
nx m-dim.mx n-dim.

. >

m><n¥dim.
(We assume that all features are mean-normalized and scaled into [0, 1])
@ The pricipal components are found by computing the eigenvectors
and eigenvalues of C (sowving (¢ — A1)u —0)
© Choose the k eigenvectors with largest eigenvalues to represent the
projection space U
© These k eigenvectors in U are used to transform the inputs x; to z;:

z0) = yTx()
—-—
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Principle Component Analysis
How to choose the number k of dimensions?
We can calculate
Average squared projection error  S2%, [|x() — approx||2
Total variation in the data LS x@2

as the accuracy of the projection using k principle components as a
function of the eigenvalues

SV
VA

=d

L
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Principle Component Analysis
How to choose the number k of dimensions?
We can calculate

Average squared projection error Sk [|x() — x() |2

approx

Total variation in the data lm 2;7:'1 || x(]|2

as the accuracy of the projection using k principle components as a
function of the eigenvalues

k N
Zi:1 >\i =d
m
2=t VN
We say that 100 - (1 — d)% of variance is retained.
(Typically, d € [0.01,0.05] )
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Outline

Feature Engineering
Strategies to cope with common challenges
Principle Component Analysis

Kernel methods
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Strategies to cope with non-linear problems @
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Strategies to cope with non-linear problems
o
[
[

‘mbient




Strategies to cope with non-linear problems

Classifier may search an objective function of sufficient dimension

r
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Strategies to cope with non-linear problems

Classifier may search an objective function of sufficient dimension
Alternative for complex non-linear decision boundaries:
Change dimension of input space so that linear separation is possible
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Example:

Mapping into linear separable space

R2
*x
x 5]
o
X
x
l <D
RE
o

W A 2 w3

B input space

y P:R*=R’

EX.XQ feature space

W

Flx)=sgn (w ,x;”+w 2):32+w3 5x1x1+b)

x
< 2 x
X
"R AaitoU T
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Using a kernel function
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Using a kernel function

Hypothesis = 1 if
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Using a kernel function

Hypothesis = 1 if
= Wp+ Wik + Woko + Waks +--- >0
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Using a kernel function

= Wy + Wiky + Woko + Waks + ...
Kernel Define kernel via landmarks

-
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Using a kernel function

= Wo + Wik + Woky + waks + ...
Clx=h112

Gaussian: k(x, ;) =e 22
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Using a kernel function

= Wo + Wik + Woky + waks + ...
Clx=h112

Gaussian: K(x, ;) =e 22
x ~ I = k(x,[;) =~ 1 (towards 0 else)
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Using a kernel function

= Wo + Wik + Woky + waks + ...
Clx=h112

Gaussian: k(x, ) =e =z
x =~ = k(x, ) ~ 1 (towards 0 else)

o=1
L
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Using a kernel function

_lx=h12

Gaussian: k(x, ) =e =z
x =~ = k(x, ) ~ 1 (towards 0 else)

= Wo + Wik + Woky + waks + ...

Example: wo = -05wy =1, wo =1, w3 =0
h(x) = wo + wik(x, i) + wak(x, b) + wsk(x, k)
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Using a kernel function

_lx=h12

Gaussian: k(x, ) =e =z
x =~ = k(x, ) ~ 1 (towards 0 else)

= Wo + Wik + Woky + waks + ...

Example: wo = -05wy =1, wo =1, w3 =0
h(x) = wo + wik(x, i) + wak(x, b) + wsk(x, k)
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Using a kernel function

= Wo + Wik + Woky + waks + ...
Clx=h112

Gaussian: K(x, ) = e~ 22
x =~ = k(x, ) ~ 1 (towards 0 else)
o_controls the width of the Gaussian

Example: wo = -05wy =1, wo =1, w3 =0
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Using a kernel function

= Wo + Wik + Woky + waks + ...
Clx=h112

Gaussian: K(x, ) = e~ 22
x =~ = k(x, ) ~ 1 (towards 0 else)
o_controls the width of the Gaussian

Example: wo = -05wy =1, wo =1, w3 =0
h(x) = wo + wik(x, i) + wak(x, b) + wsk(x, k)

)
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Using a kernel function

Kernels — placement of landmarks
Possible choice of initial landmarks: All training-set samples
Training of w;

k(xi, h)

f/ = :
k(X/; Im)

NI

i=1

m m
. 1
minC ) ~ yicosty,—1(WTf) + (1 — yi) - cost,—o(W'f) + 21 w?
/:
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Questions?

Stephan Sigg
stephan.sigg@aalto.fi

Si Zuo

si.zuo@aalto.fi
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February 14, 2022
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