CS-C3240 - Machine Learning D

Feature Engineering

Stephan Sigg

Department of Communications and Networking
Aalto University, School of Electrical Engineering
stephan.sigg@aalto.fi
Version 1.0, February 14, 2022

Learning goals

Understand the concepts of

- feature engineering
- feature selection
- challenges with high dimensional feature spaces
- Principle Component Analysis
- Kernel methods

Outline

Feature Engineering
Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Feature engineering

Feature pre-processing
\rightarrow Normalisation
Detection of outliers
Are features independent?

Feature engineering

Simple normalization: Scaling
For each sample x_{i} from a set \mathcal{X}, compute the scaled value as

$$
x_{i}^{\prime}=\frac{x_{i}-\min (\mathcal{X})}{\max (\mathcal{X})-\min (\mathcal{X})}
$$

Feature pre-processing
\rightarrow Normalisation
Detection of outliers
Are features independent?

Feature engineering

Simple normalization: Scaling

For each sample x_{i} from a set \mathcal{X}, compute the scaled value as

$$
x_{i}^{\prime}=\frac{x_{i}-\min (\mathcal{X})}{\max (\mathcal{X})-\min (\mathcal{X})}
$$

after scaling, it is common to center the values around e.g. 0 or their arithmetic mean, median, centre of mass etc.

Feature pre-processing
\rightarrow Normalisation
Detection of outliers Are features independent?

Feature engineering

Standardization to zero mean/unit variance Given a set of values $x_{i} ; i \in\{1 . . n\}$ from a set \mathcal{X} with mean μ and standard deviation σ, we derive the standardized values x_{i}^{\prime} as

$$
x_{i}^{\prime}=\frac{x_{i}-\mu}{\sigma}
$$

Feature pre-processing
\rightarrow Normalisation
Detection of outliers
Are features independent?

Feature engineering

Standardization to zero mean/unit variance
Given a set of values $x_{i} ; i \in\{1 . . n\}$ from a set \mathcal{X} with mean μ and standard deviation σ, we derive the standardized values x_{i}^{\prime} as

$$
x_{i}^{\prime}=\frac{x_{i}-\mu}{\sigma}
$$

Using the variance σ^{2} instead of σ is called variance scaling

Feature pre-processing

\rightarrow Normalisation
Detection of outliers Are features independent?

Feature engineering

Important:

When normalizing on the training set input, this need to be applied identically ot the test set input. Do not normalize the test set input on the test set data.

Feature pre-processing

\rightarrow Normalisation
Detection of outliers
Are features independent?

Feature engineering

Feature pre-processing
Normalisation
\rightarrow Detection of outliers
Are features independent?

Feature engineering

Common pitfalls in outlier handling:
It is not unusual to find values that clearly depart from the rest.

Example: In insurance, most claims are small but a few are large. Removing the large claims will completely invalidate an insurance model.

Feature pre-processing
Normalisation
\rightarrow Detection of outliers Are features independent?

Feature engineering

Common pitfalls in outlier handling: It is not unusual to find values that clearly depart from the rest.

Example: In insurance, most claims are small but a few are large. Removing the large claims will completely invalidate an insurance model.
Caution: Do not throw away outliers, unless you have evidence that they are errors

Feature pre-processing

Normalisation
\rightarrow Detection of outliers Are features independent?

Darell Huff, How to lie with Statistics, 1954

Feature engineering

Common pitfalls in outlier handling: It is not unusual to find values that clearly depart from the rest.

Approach: If outliers are present, use algorithms that are robust to outliers. For instance, covarianceor mean are sensitive to outliers. \rightarrow replace mean with median.

Feature pre-processing

Normalisation
\rightarrow Detection of outliers
Are features independent?

Feature engineering

Common pitfalls in outlier handling: It is not unusual to find values that clearly depart from the rest.
\rightarrow Outliers behave sometimes different than the rest \rightarrow train separate model on outliers
Detection clustering, density estimation,

Feature pre-processing
Normalisation
\rightarrow Detection of outliers
Are features independent?

Feature engineering

Example: walking speed vs. heart rate

(a) Positioning of the sensors

(b) Subject performing the study

Feature pre-processing

Normalisation

 Detection of outliers\rightarrow Are features independent?

Feature Selection

A large portion of the performance of Machine Learning algorithms is due to the right choice and processing of features.

Avoid non-important features

- Noisy data
- Non-correlation between features and classes
- Correlated features
- Sometimes, less is better

Feature Selection

A large portion of the performance of Machine Learning algorithms is due to the right choice and processing of features.

Avoid non-important features

- Noisy data
- Non-correlation between features and classes
- Correlated features
- Sometimes, less is better

Choosing the most important features

- Reduces training and evaluation time
- Reduces complexity of a model (easier to interpret)
- Improves prediction/recall of a model
- Reduces overfitting

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Las Vegas Filter

Repeatedly generate random feature subsets $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$, train a classifier $\hat{h}_{s}\left(\overrightarrow{\hat{w}}_{s}, \cdot\right)=\min _{i \in\left\{\mathcal{X}_{s}\right\}} \mathcal{L}\left(h\left(\vec{w}, \vec{x}^{(i)}\right), y^{(i)}\right)$ and validate $\hat{h}_{s}\left(\overrightarrow{\hat{w}}_{s}, \cdot\right)$ for its classification performance

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Focus algorithm

1 Train and evaluate a classifier for singleton feature \mathcal{X}_{0}
2 Evaluate each set of two features $\mathcal{X}_{0}, \mathcal{X}_{p}$

Until consistent solution is found

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Focus algorithm

1 Train and evaluate a classifier for singleton feature \mathcal{X}_{0}
2 Evaluate each set of two features

$$
\begin{aligned}
& \binom{|\mathcal{X}|}{k}=\frac{|\mathcal{X}|!}{(|\mathcal{X}|-k)!(k!)} \rightarrow \mathcal{O}\left(2^{|\mathcal{X}|}\right) \\
& \quad\binom{|\mathcal{X}|}{1} \cdot\binom{|\mathcal{X}|}{2} \cdots\binom{|\mathcal{X}|}{|\mathcal{X}|}
\end{aligned}
$$

Until consistent solution is found
Complexity:

$$
\mathcal{X}_{o}, \mathcal{X}_{p}
$$

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Relief algorithm

Given a collection of values $x_{i} ; i \in\{1 . . n\}$ of a feature \mathcal{X}, compute
Closest distance to all other samples of the same class
Closest distance to all samples not in that class
Rationale: Feature more relevant the more it separates a sample from samples in other classes and the less it separates from samples in same class
itelligence

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Relief algorithm

Given a collection of values $x_{i} ; i \in\{1 . . n\}$ of a feature \mathcal{X}, compute
Closest distance to all other samples of the same class Complexity:
Closest distance to all samples not in that class
$\mathcal{O}\left(|\mathcal{X}| \cdot n^{2}\right)$
Rationale: Feature more relevant the more it separates a sample from samples in other classes and the less it separates from samples in same class

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$
r\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\frac{\operatorname{Cov}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)}{\sqrt{\operatorname{Var}\left(\mathcal{X}_{1}\right) \operatorname{Var}\left(\mathcal{X}_{2}\right)}}
$$

- Identifies linear relation between features \mathcal{X}_{i}

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$
r\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\frac{\operatorname{Cov}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)}{\sqrt{\operatorname{Var}\left(\mathcal{X}_{1}\right) \operatorname{Var}\left(\mathcal{X}_{2}\right)}}
$$

- Identifies linear relation between features \mathcal{X}_{i}

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$
r\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\frac{\operatorname{Cov}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)}{\sqrt{\operatorname{Var}\left(\mathcal{X}_{1}\right) \operatorname{Var}\left(\mathcal{X}_{2}\right)}}
$$

- Identifies linear relation between features \mathcal{X}_{i}

All features should follow
a normal
distribution

Data should
have no significant outliers

Feature selection algorithms

How to identify good/meaningful features?

Feature selection

For a set of features $\{\mathcal{X}\}$, how to find a good subset $\left.\{\mathcal{X}\}_{s} \subseteq \mathcal{X}\right\}$ which is best suited to distinguish between the considered classes $\mathcal{Y}_{i} \in\{\mathcal{Y}\}$?

Pearson Correlation Coefficient

$$
r\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\frac{\operatorname{Cov}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)}{\sqrt{\operatorname{Var}\left(\mathcal{X}_{1}\right) \operatorname{Var}\left(\mathcal{X}_{2}\right)}}
$$

1. Positive r

- Identifies linear relation between features \mathcal{X}_{i}

Outline

Feature Engineering
Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space
(Problematic for methods that require statistical significance)

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension

Curse of dimensionality

Too sparse samples across regions to estimate a distribution in that space
(Problematic for methods that require statistical significance)

```
Hughes (peaking) phenomenon
```

Predictive power of classifier first increases with dimension, then decreases

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space
Fraction of the volume between radius $r=1$ and $r^{\prime}=1-\varepsilon$?

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space
Fraction of the volume between radius $r=1$ and $r^{\prime}=1-\varepsilon$?
Volume of shpere with radius r :

$$
V_{D}(r)=\delta_{D} r^{D} \quad \text { for appropriate } \delta_{D}
$$

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space
Fraction of the volume between radius $r=1$ and $r^{\prime}=1-\varepsilon$?

Volume of shpere with radius r :

$$
V_{D}(r)=\delta_{D} r^{D} \quad \text { for appropriate } \delta_{D}
$$

Given by

$$
\frac{V_{D}(1)-V_{D}(1-\varepsilon)}{V_{D}(1)}=1-(1-\varepsilon)^{D}
$$

Issues related to high dimensional input data

Exponential growth Volume of the space grows exponentially with dimension Counter-intuitive properties in higher dimensional spaces

Example - Volume of a sphere

Consider a sphere of radius $r=1$ in a D-dimensional space
Fraction of the volume between radius $r=1$ and $r^{\prime}=1-\varepsilon$?
Volume of shpere with radius r :
Given by

$$
V_{D}(r)=\delta_{D} r^{D} \quad \text { for appropriate } \delta_{D} \quad \frac{V_{D}(1)-V_{D}(1-\varepsilon)}{V_{D}(1)}=1-(1-\varepsilon)^{D}
$$

For large D, this fraction tends to 1

In high dimensions, most of the volume of a sphere concentrates near the surface

Issues related to high dimensional input data

Example - Gaussian distribution

Probability mass concentrated in a thin shell
(here plotted as distance from the origin in a polar coordinate system)

Issues related to high dimensional input data

Example - Gaussian distribution

Probability mass concentrated in a thin shell
(here plotted as distance from the origin in a polar coordinate system)

Curse of Dimensionality

Mechanisms to efficiently reduce dimensions or classifiers that respect properties of high-dimensional spaces required.

Outline

Feature Engineering
Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Principle Component Analysis
 Principal Component Analysis

Find lower dimensional surface onto which to project the data

Principle Component Analysis
 Principal Component Analysis

Find lower dimensional surface onto which to project the data

Principle Component Analysis
 Principal Component Analysis

Find lower dimensional surface onto which to project the data

Principle Component Analysis

Principal Component Analysis
Find lower dimensional surface onto which to project the data

Principle Component Analysis

PCA finds k vectors $\vec{u}_{i}, \ldots, \overrightarrow{u_{k}}$ onto which to project the data such that the projection error is minimized.

Principle Component Analysis

PCA finds k vectors $\overrightarrow{u_{1}}, \ldots, \overrightarrow{u_{k}}$ onto which to project the data such that the projection error is minimized.
\rightarrow In particular, find $\vec{z}_{i}=z_{i}^{(1)} \ldots z_{i}^{(n)}$ to represent the $\vec{x}_{i}=x_{i}^{(1)} \ldots x_{i}^{(n)}$ in this k -dimensional vector space spanned by the $\overrightarrow{u_{i}}$ Ambient

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim.m } \times n^{-\operatorname{dim}}} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim.m } \times n^{-\operatorname{dim}}} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim.m }} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}_{n-\operatorname{dim}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)

Covariance

A measure of spread of a set of points around their center of mass

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim.m } \times n-\operatorname{dim}} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $\left.\left(C-\lambda_{m}\right) u=0\right)$

Principle Component Analysis

When a matrix C is multiplied with a vector u^{\prime}, this usually results in a new vector $C u^{\prime}$ of different direction than u^{\prime}.

Principle Component Analysis

When a matrix C is multiplied with a vector u^{\prime}, this usually results in a new vector $C u^{\prime}$ of different direction than u^{\prime}.
\rightarrow There are few vectors u, however, which have the same direction ($C u=\lambda u$).
These are the eigenvectors of C and λ are the eigenvalues

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim. } m \times n-\operatorname{dim}} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $\left(C-\lambda I_{m}\right) u=0$)
Eigenvectors and Eigenvalues
The (orthogonal) eigenvectors are sorted by their eigenvalues with respect to the direction of greatest variance in the data.

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m-\operatorname{dim} . m \times n^{-d i m}} \underbrace{\boldsymbol{X}^{\boldsymbol{T}}}}_{m \times m-\operatorname{dim} .}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $\left.\left(c-\lambda l_{m}\right) u=0\right)$
(3) Choose the k eigenvectors with largest eigenvalues to represent the projection space U

Principle Component Analysis

(1) Compute the covariance matrix from the $x^{(i)}$:

$$
C=\frac{1}{n} \underbrace{\underbrace{\boldsymbol{X}}_{n \times m \text {-dim. } m \times n \text {-dim. }} \underbrace{\boldsymbol{\boldsymbol { X } ^ { \boldsymbol { T } }}}_{\boldsymbol{X}}}_{m \times m \text {-dim. }}
$$

(We assume that all features are mean-normalized and scaled into $[0,1]$)
(2) The pricipal components are found by computing the eigenvectors and eigenvalues of C (solving $\left.\left(C-\lambda_{m}\right) u=0\right)$
(3) Choose the k eigenvectors with largest eigenvalues to represent the projection space U
(4) These k eigenvectors in U are used to transform the inputs x_{i} to z_{i} :

$$
z^{(i)}=U^{T} \boldsymbol{X}^{(i)}
$$

Principle Component Analysis

How to choose the number k of dimensions?
We can calculate

$$
\frac{\text { Average squared projection error }}{\text { Total variation in the data }} \rightarrow \frac{\sum_{i=1}^{k}\left\|x^{(i)}-x_{\text {appox }}^{(i)}\right\|^{2}}{\frac{1}{m} \sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2}}
$$

as the accuracy of the projection using k principle components as a function of the eigenvalues

$$
\frac{\sum_{i=1}^{k} \sqrt{\lambda_{i}}}{\sum_{j=1}^{m} \sqrt{\lambda_{j}}}=d
$$

Principle Component Analysis

How to choose the number k of dimensions?
We can calculate

$$
\frac{\text { Average squared projection error }}{\text { Total variation in the data }} \rightarrow \frac{\sum_{i=1}^{k}\left\|x^{(i)}-x_{\text {appox }}^{(i)}\right\|^{2}}{\frac{1}{m} \sum_{i=1}^{m}\left\|x^{(i)}\right\|^{2}}
$$

as the accuracy of the projection using k principle components as a function of the eigenvalues

We say that $100 \cdot(1-d) \%$ of variance is retained.
(Typically, $d \in[0.01,0.05]$)

$$
\frac{\sum_{i=1}^{k} \sqrt{\lambda_{i}}}{\sum_{j=1}^{m} \sqrt{\lambda_{j}}}=d
$$

Outline

Feature Engineering
Strategies to cope with common challenges

Principle Component Analysis

Kernel methods

Strategies to cope with non-linear problems

Strategies to cope with non-linear problems

』mbient
Stephan Sigg

Strategies to cope with non-linear problems

Classifier may search an objective function of sufficient dimension

Strategies to cope with non-linear problems

Classifier may search an objective function of sufficient dimension Alternative for complex non-linear decision boundaries:

Change dimension of input space so that linear separation is possible

Example: Mapping into linear separable space

Using a kernel function

Using a kernel function

Hypothesis $=1$ if

Using a kernel function

Hypothesis $=1$ if

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\cdots \geq 0
$$

Using a kernel function

$$
\begin{aligned}
& \quad \Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots \\
& \text { Kernel Define kernel via landmarks }
\end{aligned}
$$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

$$
\sigma=1
$$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, l_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$\sigma=1$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$\sigma=1$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

σ controls the width of the Gaussian
Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$\sigma=1$

$$
\sigma=0.5
$$

Using a kernel function

$$
\Rightarrow w_{0}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+\ldots
$$

Gaussian: $k\left(x, l_{i}\right)=e^{-\frac{\left\|x-l_{i}\right\|^{2}}{2 \sigma^{2}}}$

$$
x \approx I_{i} \Rightarrow k\left(x, I_{i}\right) \approx 1 \text { (towards } 0 \text { else) }
$$

σ controls the width of the Gaussian
Example: $w_{0}=-0.5, w_{1}=1, w_{2}=1, w_{3}=0$

$$
h(x)=w_{0}+w_{1} k\left(x, l_{1}\right)+w_{2} k\left(x, l_{2}\right)+w_{3} k\left(x, l_{3}\right)
$$

$$
\sigma=1
$$

$$
\sigma=0.5
$$

$$
\sigma=2
$$

Using a kernel function

Kernels - placement of landmarks
Possible choice of initial landmarks: All training-set samples Training of w_{i}

$$
f_{i}=\left[\begin{array}{c}
k\left(x_{i}, l_{1}\right) \\
\vdots \\
k\left(x_{i}, l_{m}\right)
\end{array}\right]
$$

$$
\min _{W} C \sum_{i=1}^{m} y_{i} \operatorname{cost}_{y_{i}=1}\left(W^{\top} f_{i}\right)+\left(1-y_{i}\right) \cdot \operatorname{cost}_{y_{i}=0}\left(W^{\top} f_{i}\right)+\frac{1}{2} \sum_{j=1}^{m} w_{j}^{2}
$$

Questions?

Stephan Sigg
stephan.sigg@aalto.fi

Si Zuo
si.zuo@aalto.fi

Ambient

Literature

- C.M. Bishop: Pattern recognition and machine learning, Springer, 2007.
- R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification, Wiley, 2001.

