ML Project

ML project

- 1. Find a problem that interests you, formulate it as a ML problem, find relevant dataset(s)
 - The type of problems that can be solved by making **predictions**
 - E.g., how much can I sell my old mobile phone for? (Prediction: €107)
- 2. Apply ML methods to make predictions
 - Apply what you are going to learn in the lectures and the assignments
- 3. Compare different ML methods and choose the best one
- 4. Submit a report and do peer review

Stage 1 10 Feb, 20:00 5 /40 points

✓ Model real-life problems as ML problems

 \checkmark Apply basic ML methods to solve the problems

✓ Write scientific report

✓ Peer review

Train a model with excellent performance

Find a competitive solution for a complex problem

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: temperature at 23:00

ML method

• Linear regression

Excellent report

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: temperature at 23:00

ML method

• Linear regression

Excellent report

Excellent peer review

X Model real-life problems as ML problems

✓ Apply basic ML methods to solve the problems

- \checkmark Write scientific report
- ✓ Peer review

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: temperature at **21:00**

ML method

• Linear regression

Excellent report

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: temperature at **21:00**

ML method

• Linear regression

Excellent report

Excellent peer review

✗ Model real-life problems as ML problems

✓ Apply basic ML methods to solve the problems

 \checkmark Write scientific report

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: minimum daytime temperature

ML method

• Linear regression

Excellent report

ML problem

- Data points: days
- features: temperature at 01:00,03:00, 05:00
- labels: minimum daytime temperature

ML method

• Linear regression

Excellent report

Excellent peer review

Different, but only a very straight forward variation.

✓ Model real-life problems as ML problems

✓ Apply basic ML methods to solve the problems

✓ Write scientific report

ML problem

- Data points: days
- features: **something completely different**
- labels: temperature at 21:00

ML method

• Linear regression

Excellent report

ML problem

- Data points: days
- features: **something completely different**
- labels: temperature at 21:00

ML method

• Linear regression

Excellent report

Excellent peer review

Very original

- ✓ Model real-life problems as ML problems
- ✓ Apply basic ML methods to solve the problems
- \checkmark Write scientific report
- ✓ Peer review

ML problem

- Data points: iris
- features: sepal width
- labels: sepal length

ML method

• Linear regression

Excellent report

ML problem

- Data points: iris
- features: sepal width
- labels: sepal length

ML method

• Linear regression

Excellent report

Excellent peer review

✗ Model real-life problems as ML problems

✗ Apply basic ML methods to solve the problems

 \checkmark Write scientific report

ML problem

- Data points: iris
- features: **sepal length**
- labels: **sepal width**

ML method

• Linear regression

Excellent report

ML problem

- Data points: iris
- features: **sepal length**
- labels: **sepal width**

ML method

• Linear regression

Excellent report

Excellent peer review

X Model real-life problems as ML problems

★ Apply basic ML methods to solve the problems

 \checkmark Write scientific report

ML problem

- Data points: iris
- features: sepal width
- labels: sepal length

ML method

• Polynomial regression

Excellent report

ML problem

- Data points: iris
- features: sepal width
- labels: sepal length

ML method

Polynomial regression

Excellent report

Excellent peer review

X Model real-life problems as ML problems

 \checkmark Apply basic ML methods to solve the problems

- ✓ Write scientific report
- ✓ Peer review

ML problem

- Data points: iris
- features: something completely different
- labels: sepal length

ML method

• Linear regression

Excellent report

Excellent peer review

✓ Model real-life problems as ML problems

✓ Apply basic ML methods to solve the problems

 \checkmark Write scientific report

Reviewing process

- Do all peer reviews assigned to you
- Remember to motivate your grading in the comment box
- ~100 submissions will be randomly selected and reviewed by TAs
- TA review **after** peer review

Aspect 1	
Is the meaning of a data point clearly explained? The report must explicitly state what data points are representing.	
Some examples are data points representing (1) images, (2) flats, and (3) people.	
• 1p – Yes	
• 0p – No	
Grade for Aspect 1	1/1 🗘
Comment for Aspect 1	The data points are days.

Summary

- Come up with your own ML problem
- Don't worry about losing points for your originality unless you directly transfer the idea from somewhere
- Simple problems are great candidates
- Focus on the process, not the results (answer the whys > model performance)