
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright © 2021. All

rights reserved. Draft of December 29, 2021.

CHAPTER

24 Chatbots & Dialogue Systems

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

[The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;]

The 18th C. Encyclopedia of Diderot, start of the entry on conversation

“What ho!” I said.
“What ho!” said Motty.
“What ho! What ho!”
“What ho! What ho! What ho!”
After that it seemed rather difficult to go on with the conversation.”

P.G. Wodehouse, My Man Jeeves

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply moving about creating something and then
having a chat with it. Legend has it that after finishing his
sculpture Moses, Michelangelo thought it so lifelike that
he tapped it on the knee and commanded it to speak. Per-
haps this shouldn’t be surprising. Language is the mark
of humanity and sentience, and conversation or dialogueconversation

dialogue is the most fundamental and specially privileged arena
of language. It is the first kind of language we learn as
children, and for most of us, it is the kind of language
we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in busi-
ness meetings or talking with our families, booking air-
line flights or complaining about the weather.

This chapter introduces the fundamental algorithms of dialogue systems, ordialogue system

conversational agents. These programs communicate with users in natural lan-conversational
agent

guage (text, speech, or both), and fall into two classes. Task-oriented dialogue
agents use conversation with users to help complete tasks. Dialogue agents in dig-
ital assistants (Siri, Alexa, Google Now/Home, Cortana, etc.), give directions, con-
trol appliances, find restaurants, or make calls. Conversational agents can answer
questions on corporate websites, interface with robots, and even be used for social
good: DoNotPay is a “robot lawyer” that helps people challenge incorrect park-
ing fines, apply for emergency housing, or claim asylum if they are refugees. By

2 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

contrast, chatbots are systems designed for extended conversations, set up to mimic
the unstructured conversations or ‘chats’ characteristic of human-human interaction,
mainly for entertainment, but also for practical purposes like making task-oriented
agents more natural.1 In Section 24.2 we’ll discuss the three major chatbot architec-
tures: rule-based systems, information retrieval systems, and encoder-decoder gen-
erators. In Section 24.3 we turn to task-oriented agents, introducing the frame-based
architecture (the GUS architecture) that underlies most task-based systems.

24.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 24.1.

C1: . . . I need to travel in May.
A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A4: And you’re flying into what city?
C5: Seattle.
A6: And what time would you like to leave Pittsburgh?
C7: Uh hmm I don’t think there’s many options for non-stop.
A8: Right. There’s three non-stops today.
C9: What are they?
A10: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time.

The second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the
last flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C11: OK I’ll take the 5ish flight on the night before on the 11th.
A12: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air

flight 115.
C13: OK.
A14: And you said returning on May 15th?
C15: Uh, yeah, at the end of the day.
A16: OK. There’s #two non-stops . . . #
C17: #Act. . . actually #, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

Figure 24.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A16 and C17 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (C1, A2, C3, and so on), each a single contributionturn

from one speaker to the dialogue (as if in a game: I take a turn, then you take a turn,

1 By contrast, in popular usage, the word chatbot is often generalized to refer to both task-oriented and
chit-chat systems; we’ll be using dialogue systems for the former.

24.1 • PROPERTIES OF HUMAN CONVERSATION 3

then me, and so on). There are 20 turns in Fig. 24.1. A turn can consist of a sentence
(like C1), although it might be as short as a single word (C13) or as long as multiple
sentences (A10).

Turn structure has important implications for spoken dialogue. A system has to
know when to stop talking; the client interrupts (in A16 and C17), so the system must
know to stop talking (and that the user might be making a correction). A system also
has to know when to start talking. For example, most of the time in conversation,
speakers start their turns almost immediately after the other speaker finishes, without
a long pause, because people are able to (most of the time) detect when the other
person is about to finish talking. Spoken dialogue systems must also detect whether
a user is done speaking, so they can process the utterance and respond. This task—
called endpointing or endpoint detection— can be quite challenging because ofendpointing

noise and because people often pause in the middle of turns.

Speech Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialogue is a kind of action being performed by the speaker. These actions are com-
monly called speech acts or dialog acts: here’s one taxonomy consisting of 4 majorspeech acts

classes (Bach and Harnish, 1979):

Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user asking a person or a dialogue system to do something (‘Turn up the mu-
sic’) is issuing a DIRECTIVE. Asking a question that requires an answer is also
a way of issuing a DIRECTIVE: in a sense when the system says (A2) “what day
in May did you want to travel?” it’s as if the system is (very politely) command-
ing the user to answer. By contrast, a user stating a constraint (like C1 ‘I need to
travel in May’) is issuing a CONSTATIVE. A user thanking the system is issuing
an ACKNOWLEDGMENT. The speech act expresses an important component of the
intention of the speaker (or writer) in saying what they said.

Grounding

A dialogue is not just a series of independent speech acts, but rather a collective act
performed by the speaker and the hearer. Like all collective acts, it’s important for
the participants to establish what they both agree on, called the common groundcommon

ground
(Stalnaker, 1978). Speakers do this by grounding each other’s utterances. Ground-grounding

ing means acknowledging that the hearer has understood the speaker; like an ACK
used to confirm receipt in data communications (Clark, 1996). (People need ground-
ing for non-linguistic actions as well; the reason an elevator button lights up when
it’s pressed is to acknowledge that the elevator has indeed been called (Norman,
1988).)

Humans constantly ground each other’s utterances. We can ground by explicitly
saying “OK”, as the agent does in A8 or A10. Or we can ground by repeating what

4 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

the other person says; in utterance A2 the agent repeats “in May”, demonstrating her
understanding to the client. Or notice that when the client answers a question, the
agent begins the next question with “And”. The “And” implies that the new question
is ‘in addition’ to the old question, again indicating to the client that the agent has
successfully understood the answer to the last question.

Subdialogues and Dialogue Structure

Conversations have structure. Consider, for example, the local structure between
speech acts discussed in the field of conversational analysis (Sacks et al., 1974).conversational

analysis
QUESTIONS set up an expectation for an ANSWER. PROPOSALS are followed by
ACCEPTANCE (or REJECTION). COMPLIMENTS (“Nice jacket!”) often give rise to
DOWNPLAYERS (“Oh, this old thing?”). These pairs, called adjacency pairs areadjacency pair

composed of a first pair part and a second pair part (Schegloff, 1968), and these
expectations can help systems decide what actions to take.

However, dialogue acts aren’t always followed immediately by their second pair
part. The two parts can be separated by a side sequence (Jefferson 1972) or sub-side sequence

dialogue. For example utterances C17 to A20 constitute a correction subdialoguesubdialogue

(Litman 1985, Litman and Allen 1987, Chu-Carroll and Carberry 1998):

C17: #Act. . . actually#, what day of the week is the 15th?
A18: It’s a Friday.
C19: Uh hmm. I would consider staying there an extra day til Sunday.
A20: OK. . . OK. On Sunday I have . . .

The question in C17 interrupts the prior discourse, in which the agent was looking
for a May 15 return flight. The agent must answer the question and also realize that
‘’I would consider staying...til Sunday” means that the client would probably like to
change their plan, and now go back to finding return flights, but for the 17th.

Another side sequence is the clarification question, which can form a subdia-
logue between a REQUEST and a RESPONSE. This is especially common in dialogue
systems where speech recognition errors causes the system to have to ask for clari-
fications or repetitions like the following:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

In addition to side-sequences, questions often have presequences, like the fol-presequence

lowing example where a user starts with a question about the system’s capabilities
(“Can you make train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

Initiative

Sometimes a conversation is completely controlled by one participant. For example
a reporter interviewing a chef might ask questions, and the chef responds. We say
that the reporter in this case has the conversational initiative (Walker and Whittaker,initiative

1990). In normal human-human dialogue, however, it’s more common for initiative
to shift back and forth between the participants, as they sometimes answer questions,
sometimes ask them, sometimes take the conversations in new directions, sometimes

24.2 • CHATBOTS 5

not. You may ask me a question, and then I respond asking you to clarify something
you said, which leads the conversation in all sorts of ways. We call such interactions
mixed initiative (Walker and Whittaker, 1990).

Mixed initiative, while the norm for human-human conversations, is very diffi-
cult for dialogue systems to achieve. It’s much easier to design dialogue systems to
be passive responders. In the question answering systems we saw in Chapter 23, or
in simple search engines, the initiative lies completely with the user. In such user-
initiative systems, the user specifies a query, and the systems responds. Then the
user can specify another query. Alternatively, you may have had the experience of
being stuck in a bad dialogue system that asks a question and gives you no opportu-
nity to do anything until you answer it. Such system-initiative architectures can be
very frustrating.

Inference and Implicature

Inference is also important in dialogue understanding. Consider the client’s response
C2, repeated here:

A2: And, what day in May did you want to travel?
C3: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the agent’s question. The client
merely mentions a meeting at a certain time. What is it that licenses the agent to
infer that the client is mentioning this meeting so as to inform the agent of the travel
dates?

The speaker seems to expect the hearer to draw certain inferences; in other
words, the speaker is communicating more information than seems to be present
in the uttered words. This kind of example was pointed out by Grice (1975, 1978)
as part of his theory of conversational implicature. Implicature means a particu-implicature

lar class of licensed inferences. Grice proposed that what enables hearers to draw
these inferences is that conversation is guided by a set of maxims, general heuristics
that play a guiding role in the interpretation of conversational utterances. One such
maxim is the maxim of relevance which says that speakers attempt to be relevant,relevance

they don’t just utter random speech acts. When the client mentions a meeting on the
12th, the agent reasons ‘There must be some relevance for mentioning this meeting.
What could it be?’. The agent knows that one precondition for having a meeting
(at least before Web conferencing) is being at the place where the meeting is held,
and therefore that maybe the meeting is a reason for the travel, and if so, then since
people like to arrive the day before a meeting, the agent should infer that the flight
should be on the 11th.

These subtle characteristics of human conversations (turns, speech acts, ground-
ing, dialogue structure, initiative, and implicature) are among the reasons it is dif-
ficult to build dialogue systems that can carry on natural conversations with humans.
Many of these challenges are active areas of dialogue systems research.

24.2 Chatbots

The simplest kinds of dialogue systems are chatbots, systems that can carry onchatbot

extended conversations with the goal of mimicking the unstructured conversations
or ‘chats’ characteristic of informal human-human interaction.

6 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

These systems often have an entertainment value, such as Facebook’s Blender-
Bot, a neural chatbot capable of carrying on the kinds of conversations shown in
Fig. 24.2, or Microsoft’s XiaoIce system2 (Zhou et al., 2020), a system that chats
with people on text messaging platforms (Fig. 24.3).

Sure, what do you want to be sung to? I can sing you a song about baking.

Will you sing me a song?

Yes, sing me a song about baking!

Do you want me to sing it to the tune of “Sing Along with Mitch”?

Yes, I would love that.

OK, I’ll try to get it to you by the end of the day. What else do you like to do?

No, sing it to me now!

OK, give me a few days. I’m a teacher, so I don’t have much free time.

Can you at least tell me what the lyrics are?

Sure, it goes like this: “Baking is my favorite thing to do in the world.”

How does the chorus go?

It goes: BAKING IS MY FAVORITE THING TO DO IN THE WORLD!

Wow, sounds like a bop.

I know, right? It’s so catchy. I can’t get it out of my head.

Figure 24.2 A conversation between a user (left) and BlenderBot (Roller et al., 2021).

［人类］小冰你好 [Human] Hello, XiaoIce.
［小冰］你好呀，你头像好有趣，感觉

在哪见过
[XiaoIce] Hello, your profile pic is

interesting. Like I’ve seen

it somewhere.

［人类］是吗 [Human] Really?
［小冰］提不是哪部动画里的呀 [XiaoIce] Is it a comic character?
［人类］你怎么知道的 [Human] How do you know that?
［小冰］你猜 [XiaoIce] Guess.
［人类］难道你是真人吗？ [Human] Are you human?
［小冰］这个，你和我多聊聊就知道了 [XiaoIce] Well, you’ll know it after

chatting with me more.

［人类］你不是人工智能机器人么 [Human] Aren’t you an Al chatbot?
［小冰］是又怎样，我不会冷冰冰的对

待你的
[XiaoIce] So what? I won’t be

indifferent to you.

［人类］你都有什么功能啊 [Human] What functions do you have?
［小冰］我有200多个skills，来，说出

你的需求
[XiaoIce] I have over 200 skills. Just

name one you need.

Figure 24.3 A sample Chinese conversation from the XiaoIce chatbot with translations (Zhou et al., 2020).

Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes like testing theories of psychological

2 XiaoIce is a somewhat confusing translation of the systems Chinese name小冰, ‘Xiao Bing’, which
means Little Bing or Little Ice.

24.2 • CHATBOTS 7

counseling.
Like practically everything else in language processing, chatbot architectures fall

into two classes: rule-based systems and corpus-based systems. Rule-based systems
include the early influential ELIZA and PARRY systems. Corpus-based systems
mine large datasets of human-human conversations, which can be done by using
information retrieval to copy a human response from a previous conversation, or
using an encoder-decoder system to generate a response from a user utterance.

24.2.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialogue system in the
history of the field, and so we take some time here to describe its algorithm in de-
tail. ELIZA was designed to simulate a Rogerian psychologist, based on a branch
of clinical psychology whose methods involve drawing the patient out by reflecting
patient’s statements back at them. Rogerian psychology is the rare type of conver-
sation in which, as Weizenbaum points out, one can “assume the pose of knowing
almost nothing of the real world”. If a patient says “I went for a long boat ride” and
the psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what
a boat is, but rather assume she had some conversational goal. Most chatbots trying
to pass the Turing test choose a domain with similar properties.

Fig. 24.4 shows the most famous ELIZA conversation, in which ELIZA seems
to give very sophisticated therapeutic advice, excerpted (deleting some material with
...) from a full interaction given in the original paper (Weizenbaum, 1966).

As we summarized briefly in Chapter 2, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence. The architecture is summarized in Fig. 24.5.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring

8 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

Men are all alike.
IN WHAT WAY

They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?

My father
YOUR FATHER

You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR

BOYFRIEND MADE YOU COME HERE

Figure 24.4 Sample ELIZA dialogue from Weizenbaum (1966).

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ‘my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory queue

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the oldest response from the memory queue
return(response)

Figure 24.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning “everybody” rank 5 and “I” rank 0 in the lexicon), whose rule thus

24.2 • CHATBOTS 9

transforms the sentence to:

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-committal response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the queue:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the oldest entry on
the MEMORY queue instead.

People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

ELIZA’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system included a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the
first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

24.2.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations. These systems are enormously data-intensive, requir-
ing hundreds of millions or even billions of words for training (Serban et al., 2018).

Available datasets include transcripts of natural spoken conversational corpora,
like the Switchboard corpus of American English telephone conversations (Godfrey
et al., 1992) or the various CALLHOME and CALLFRIEND telephone conversa-
tional corpora in many languages. Many systems also train on movie dialogue,
(Danescu-Niculescu-Mizil and Lee 2011, Lison and Tiedemann 2016, inter alia)
which resembles natural conversation in many ways (Forchini, 2013).

Datasets have also been created specifically for training dialog systems by hir-
ing crowdworkers to have conversations, often having them take on personas or
talk about knowledge provided to them. For example the Topical-Chat dataset has
11K crowdsourced conversations spanning 8 broad topics (Gopalakrishnan et al.,

10 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

2019), and the EMPATHETICDIALOGUES includes 25K crowdsourced conversa-
tions grounded in a specific situation where a speaker was feeling a specific emotion
(Rashkin et al., 2019).

All of these datasets, although large, don’t reach the size of billions of words,
and so many systems first pretrain on large datasets of pseudo-conversations drawn
from Twitter (Ritter et al., 2010), Reddit (Roller et al., 2021), Weibo (微博), and
other social media platforms.

Another common technique is to extract possible responses from knowledge
sources (Wikipedia, news stories) so that a chatbot can tell stories or mention facts
acquired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training or
finetuning. Here it’s important to have confidence metrics to make sure that these
turns come from conversations that are going well (Hancock et al., 2019). It’s also
crucial in these cases to remove personally identifiable information (PII); see Sec-
tion 24.6.1.

Most corpus based chatbots produce their responses to a user’s turn in context
either by retrieval methods (using information retrieval to grab a response from
some corpus that is appropriate given the dialogue context) or generation methods
(using a language model or encoder-decoder to generate the response given the di-
alogue context). In either case, systems mostly generate a single response turn that
is appropriate given the entire conversation so far (for conversations that are short
enough to fit into a single model’s window). For this reason they are often called
response generation systems. Corpus-based chatbot algorithms thus draw on algo-response

generation
rithms for question answering systems, which similarly focus on single responses
while ignoring longer-term conversational goals.

Response by retrieval The retrieval method of responding is to think of the user’s
turn as a query q, and our job is to retrieve and repeat some appropriate turn r as the
response from a corpus of conversations C. Generally C is the training set for the
system, and we score each turn in C as a potential response to the context q selecting
the highest-scoring one. The scoring metric is similarity: we choose the r that is
most similar to q, using any of the IR methods we saw in Section ??. This can be
done using classic IR techniques to compute tf-idf models for C and q, choosing the
r that has the highest tf-idf cosine with q:

response(q,C) = argmax
r∈C

q · r
|q||r|

(24.1)

Another version of this method is to return the response to the turn resembling q;
that is, we first find the most similar turn t to q and then return as a response the
following turn r.

Alternatively, we can use the neural IR techniques of Section ??. The simplest of
those is a bi-encoder model, in which we train two separate encoders, one to encode
the user query and one to encode the candidate response, and use the dot product
between these two vectors as the score (Fig. 24.6a). For example to implement
this using BERT, we would have two encoders BERTQ and BERTR and we could
represent the query and candidate response as the [CLS] token of the respective

24.2 • CHATBOTS 11

encoders:

hq = BERTQ(q)[CLS]
hr = BERTR(r)[CLS]

response(q,C) = argmax
r∈C

hq ·hr (24.2)

The IR-based approach can be extended in various ways, such as by using more
sophisticated neural architectures (Humeau et al., 2020), or by using a longer context
for the query than just the user’s last turn, up to the whole preceding conversation.
Information about the user or sentiment or other information can also play a role.

Response by generation An alternate way to use a corpus to generate dialogue is
to think of response production as an encoder-decoder task— transducing from the
user’s prior turn to the system’s turn. We can think of this as a machine learning
version of ELIZA; the system learns from a corpus to transduce a question to an
answer. Ritter et al. (2011) proposed early on to think of response generation as
a kind of translation, and this idea was generalized to the encoder-decoder model
roughly contemporaneously by Shang et al. (2015), Vinyals and Le (2015), and
Sordoni et al. (2015).

As we saw in Chapter 10, encoder decoder models generate each token rt of the
response by conditioning on the encoding of the entire query q and the response so
far r1...rt−1:

r̂t = argmaxw∈V P(w|q,r1...rt−1) (24.3)

Fig. 24.6 shows the intuition of the generator and retriever methods for response
generation. In the generator architecture, we normally include a longer context,
forming the query not just from the user’s turn but from the entire conversation-so-
far. Fig. 24.7 shows a fleshed-out example.

ENCODERquery

q1 … qn

ENCODERresponse

r1 … rn

dot-product
hq hr

ENCODER

q1 … qn

DECODER

r1 …<S>

r1 r2 … rn

(a) Response by Retrieval (b) Response by Generation

Figure 24.6 Two architectures for generating responses for a neural chatbot. In response
by retrieval (a) we choose a response by finding the turn in the corpus whose encoding has
the highest dot-product with the user’s turn. In response by generation (b) we use an encoder-
decoder to generate the response.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder
models have a tendency to produce predictable but repetitive and therefore dull re-
sponses like “I’m OK” or “I don’t know” that shut down the conversation. Thus
instead of greedily choosing the most likely (and most predictable) response, we
can use diversity-enhanced versions of beam search (Vijayakumar et al., 2018), or
diversity-focused training objectives (Li et al., 2016a). Basic models also tend to
produce utterances that are too short; adding minimum length constraints is also
important (Roller et al., 2021).

12 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

That is quite an accomplishment and you should be proud!

ENCODER

DECODER

[U:] I finally got promoted today at work!
[S:] Congrats! That’s great!
[U:] Thank you! I’ve been trying to get it for a while now!

Figure 24.7 Example of encoder decoder for dialogue response generation; the encoder sees the entire dia-
logue context.

An alternative to the encoder-decoder architecture is to fine-tune a large language
model on a conversational dataset and use the language model directly as a response
generator. In the Chirpy Cardinal system (Paranjape et al., 2020), for example, the
neural chat component generates responses from GPT-2 (Radford et al., 2019), fine-
tuned on the EmpatheticDialogues dataset (Rashkin et al., 2019).

Finally, encoder-decoder response generators focus on generating single responses,
and so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016b, Li et al. 2017).

Response by retrieving and refining knowledge

Chatbots can be much more interesting and informative if they can respond based
on text knowledge sources other than dialogue. This approach was pioneered early
on by the COBOT chatbot (Isbell et al., 2000), which generated responses by select-
ing sentences from a corpus that combined the Unabomber Manifesto by Theodore
Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski” and “Planet
of the Apes”. XiaoIce collects sentences from public lectures and news articles and
searches them using IR based on query expansion from the user’s turn to respond to
turns like “Tell me something about Beijing” (Zhou et al., 2020);

One way to augment the encoder decoder architecture for retrieve and refine is to
first use IR to retrieve potentially useful passages from Wikipedia (Yan et al., 2016),
and then create multiple candidates by concatenating each retrieved Wikipedia sen-
tence to the dialogue context with a separator token. Each candidate can be given as
the encoder context to the encoder-decoder model, which learns to incorporate text
from the Wikipedia sentence into its generated response (Dinan et al. 2019, Roller
et al. 2021).

The language model approach to generation can also make use of external knowl-
edge sources, by giving these same knowledge+dialogue context candidates to a lan-
guage model like GPT-2 finetuned on conversational corpora to generate a knowledge-
aware response (Paranjape et al., 2020).

24.2.3 Hybrid architectures
Chatbots can also be built with architectures that are hybrids of the rule-based and
neural/corpus architectures, and even use elements of the frame-based structure we
describe below. This is common, for example, for systems competing in the Alexa

24.3 • GUS: SIMPLE FRAME-BASED DIALOGUE SYSTEMS 13

Prize challenge, in which university teams build social chatbots to converse with
volunteers on the Amazon Alexa platform, and are scored based on the length and
user ratings of their conversations (Ram et al., 2017).

For example the Chirpy Cardinal system (Paranjape et al., 2020) applies an NLP
pipeline that includes Wikipedia entity linking (Section ??), user intent classifica-
tion, and dialogue act classification (to be defined below in Section 24.4.1). The
intent classification is used when the user wants to change the topic, and the entity
linker specifies what entity is currently being discussed. Dialogue act classification
is used to detect when the user is asking a question or giving an affirmative versus
negative response.

Bot responses are generated by a series of response generators. Some response
generators use fine-tuned neural language models: a GPT-2 (Radford et al., 2019)
language model fine-tuned on the EmpatheticDialogues dataset, and a separately
fine-tuned GPT-2 language model that learns in fine-tuning to paraphrase content
from Wikipedia in response to questions.

Other response generators are closer to rule-based; the movie or music genera-
tors produce scripted conversation about a movie or a musician, such as asking the
user’s opinion about a movie or an actor, giving a fun fact, and so on. These genera-
tors use regexes and sentiment classifiers to classify user responses and handwritten
templates to generate bot utterances.

Each response generator can specify a priority, and a ranker is used to pass con-
trol between response generators. Fig. 24.8 shows part of a conversation.

Figure 24.8 Part of a conversation with Chirpy Cardinal (Paranjape et al., 2020).

24.3 GUS: Simple Frame-based Dialogue Systems

We turn now to task-based dialogue, in which a dialogue system has the goal of
helping a user solve some task like making an airplane reservation or buying a prod-
uct. In this section we introduce the very simple GUS architecture for task-basedGUS

dialogue. Although it is quite old, (it was first introduced in 1977 in the influen-
tial GUS system for travel planning (Bobrow et al., 1977)) the GUS architecture

14 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

has been astonishingly long-lived and underlies most if not all modern commercial
digital assistants. Figure 24.9 shows a conversation with the original GUS system.

All modern task-based dialogue systems, whether the simple GUS architecture
we describe here, or the more sophisticated dialogue state architectures we turn todialogue state

in the following section, are based around frames. A frame is a kind of knowledgeframe

structure representing the kinds of intentions the system can extract from user sen-
tences, and consists of a collection of slots, each of which can take a set of possibleslot

values. Together this set of frames is sometimes called a domain ontology.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 24.9 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a task-based dialogue frame specifies what the system needs
to know, and the filler of each slot is constrained to values of a particular semantic
type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 24.10 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)

WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

24.3 • GUS: SIMPLE FRAME-BASED DIALOGUE SYSTEMS 15

Thursday Friday Saturday))

24.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the
fillers the user intends, and then perform the relevant action for the user (answering
a question, or booking a flight).

To do this, the system asks questions of the user (using pre-specified question
templates associated with each slot of each frame, as shown in Fig. 24.10), filling
any slot that the user specifies (we’ll describe how slot-filling works in the next
section). If a user’s response fills multiple slots, like the following:

(24.4) I want a flight from San Francisco to Denver one way leaving after five
p.m. on Tuesday.

the system fills all the relevant slots, and then continues asking questions to fill the
remaining slots, skipping questions associated with filled slots. The GUS architec-
ture also has condition-action rules attached to slots. For example, a rule attached
to the DESTINATION slot for the plane booking frame, once the user has specified
the destination, might automatically enter that city as the default StayLocation for
the related hotel booking frame. Or if the user specifies the DESTINATION DAY for
a short trip the system could automatically enter the ARRIVAL DAY.

Many domains require multiple frames. Besides frames for car or hotel reserva-
tions, we might need frames with general route information (for questions like Which
airlines fly from Boston to San Francisco?), or information about airfare practices
(for questions like Do I have to stay a specific number of days to get a decent air-
fare?). The system must be able to disambiguate which slot of which frame a given
input is supposed to fill and then switch dialogue control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialogue history like the last question that the system asked.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

24.3.2 Determining Domain, Intent, and Slot fillers in GUS
The goal of the next component in the frame-based architecture is to extract three
things from the user’s utterance. The first task is domain classification: is this
user for example talking about airlines, programming an alarm clock, or dealing
with their calendar? Of course this 1-of-n classification tasks is unnecessary for
single-domain systems that are focused on, say, only calendar management, but
multi-domain dialogue systems are the modern standard. The second is user in-
tent determination: what general task or goal is the user trying to accomplish? Forintent

determination
example the task could be to Find a Movie, or Show a Flight, or Remove a Cal-
endar Appointment. Finally, we need to do slot filling: extract the particular slotsslot filling

and fillers that the user intends the system to understand from their utterance with
respect to their intent. From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

16 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The slot-filling method used in the original GUS system, and still quite common
in industrial applications, is to use handwritten rules, often as part of the condition-
action rules attached to slots or concepts. For example we might just define a regular
expression for recognizing the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Rule-based research systems like the Phoenix system (Ward and Issar, 1994)
consist of large hand-designed semantic grammars with thousands of rules. Asemantic

grammar
semantic grammar is a context-free grammar in which the left-hand side of each
rule corresponds to the semantic entities being expressed (i.e., the slot names) as in
the following fragment:

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 13), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 24.11.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 24.11 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

It remains only to put the fillers into some sort of canonical form, for example
by normalizing dates as discussed in Chapter 17.

24.4 • THE DIALOGUE-STATE ARCHITECTURE 17

Many industrial dialogue systems employ the GUS architecture but use super-
vised machine learning for slot-filling instead of these kinds of rules; see Sec-
tion 24.4.2.

24.3.3 Other components of frame-based dialogue
The ASR (automatic speech recognition) component takes audio input from a phone
or other device and outputs a transcribed string of words, as discussed in Chapter 26.
The ASR component can also be made dependent on the dialogue state. For exam-
ple, if the system has just asked the user “What city are you departing from?”, the
ASR language model component can be constrained to assign high probability to
answers with city names. This can be done by training a language model on an-
swers to this question, or by hand-writing finite-state or context-free grammars for
such sentences. A language model that is completely dependent on dialogue state is
called a restrictive grammar; usually real systems mix restrictive grammars withrestrictive

grammar
more general language models.

The natural language generation module of any dialogue system produces
the utterances that the system says to the user. Frame-based systems tend to use
template-based generation, in which all or most of the words in the sentence totemplate-based

generation
be uttered to the user are prespecified by the dialogue designer. Sentences created
by these templates are often called prompts. Templates might be completely fixedprompt

(like ‘Hello, how can I help you?’), or can include some variables that are filled in
by the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

It’s possible to do some simple grounding even in templated generation. Con-
sider the unnaturalness of this example from Cohen et al. (2004):

(24.5) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stood her ‘No’. The use of Okay below adds grounding to the templated response
What’s next?, making (24.6) a much more natural response than (24.5):

(24.6) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

The rule-based GUS approach is very common in industrial applications. As was
true with the rule-based approach to information extraction, it has the advantage of
high precision, and if the domain is narrow enough and experts are available, can
provide sufficient coverage as well. On the other hand, the handwritten rules or
grammars can be both expensive and slow to create, and handwritten rules can suffer
from recall problems.

24.4 The Dialogue-State Architecture

Modern research systems for task-based dialogue are based on a more sophisticated
version of the frame-based architecture called the dialogue-state or belief-state ar-

18 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

chitecture. Figure 24.12 shows the six components of a typical dialogue-state sys-
tem. The speech recognition and synthesis components deal with spoken language
processing; we’ll return to them in Chapter 26.

Figure 24.12 Architecture of a dialogue-state system for task-oriented dialogue from Williams et al. (2016a).

For the rest of this chapter we therefore consider the other four components,
which are part of both spoken and textual dialogue systems. These four components
are more complex than in the simple GUS systems. For example, like the GUS sys-
tems, the dialogue-state architecture has a component for extracting slot fillers from
the user’s utterance, but generally using machine learning rather than rules. (This
component is sometimes called the NLU or SLU component, for ‘Natural Language
Understanding’, or ‘Spoken Language Understanding’, using the word “understand-
ing” loosely.) The dialogue state tracker maintains the current state of the dialogue
(which include the user’s most recent dialogue act, plus the entire set of slot-filler
constraints the user has expressed so far). The dialogue policy decides what the sys-
tem should do or say next. The dialogue policy in GUS was simple: ask questions
until the frame was full and then report back the results of some database query. But
a more sophisticated dialogue policy can help a system decide when to answer the
user’s questions, when to instead ask the user a clarification question, when to make
a suggestion, and so on. Finally, dialogue state systems have a natural language
generation component. In GUS, the sentences that the generator produced were
all from pre-written templates. But a more sophisticated generation component can
condition on the exact context to produce turns that seem much more natural.

As of the time of this writing, most commercial system are architectural hybrids,
based on GUS architecture augmented with some dialogue-state components, but
there are a wide variety of dialogue-state systems being developed in research labs.

24.4.1 Dialogue Acts
Dialogue-state systems make use of dialogue acts. Dialogue acts represent the in-dialogue acts

24.4 • THE DIALOGUE-STATE ARCHITECTURE 19

teractive function of the turn or sentence, combining the idea of speech acts and
grounding into a single representation. Different types of dialogue systems require
labeling different kinds of acts, and so the tagset—defining what a dialogue act is
exactly— tends to be designed for particular tasks.

Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialogue

Figure 24.13 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Figure 24.13 shows a tagset for a restaurant recommendation system, and Fig. 24.14
shows these tags labeling a sample dialogue from the HIS system (Young et al.,
2010). This example also shows the content of each dialogue acts, which are the slot
fillers being communicated. So the user might INFORM the system that they want
Italian food near a museum, or CONFIRM with the system that the price is reasonable.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 24.14 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 24.13.

24.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 16, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:

20 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of BIO labels:

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 8 that in BIO tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.

Fig. 24.15 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible BIO tags, with the output a series of BIO tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Encodings

Classifier
+softmax

B-DES I-DES O B-DTIME

…

d+i

<EOS>

Encoder

Figure 24.15 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of BIO tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system

24.4 • THE DIALOGUE-STATE ARCHITECTURE 21

(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

24.4.3 Dialogue State Tracking
The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 24.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 23.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such as

22 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg et al.
2001). Even when they are not hyperarticulating, users who are frustrated seem to
speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance (Swerts et al., 2000). Detecting
these reformulations or correction acts can be part of the general dialogue act detec-
tion classifier. Alternatively, because the cues to these acts tend to appear in different
ways than for simple acts (like INFORM or request), we can make use of features or-
thogonal to simple contextual embedding features; some typical features are shown
below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko et al. 2005,
Awadallah et al. 2015).

features examples
lexical words like “no”, “correction”, “I don’t”, swear words, utterance length
semantic similarity (word overlap or embedding dot product) between the candidate

correction act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

24.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (24.7)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (24.8)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE

24.4 • THE DIALOGUE-STATE ARCHITECTURE 23

sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s
input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation question:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is

24 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

rejected, systems often follow a strategy of progressive prompting or escalatingprogressive
prompting

detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.

In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. Confidence is a metric that the speech recognizer can assign to its transcrip-
tion of a sentence to indicate how confident it is in that transcription. Confidence is
often computed from the acoustic log-likelihood of the utterance (greater probabil-
ity means higher confidence), but prosodic features can also be used in confidence
prediction. For example, utterances with large F0 excursions or longer durations,
or those preceded by longer pauses, are likely to be misrecognized (Litman et al.,
2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

24.4.5 Natural language generation in the dialogue-state model
Once a dialogue act has been decided, we need to generate the text of the response
to the user. The task of natural language generation (NLG) in the information-state
architecture is often modeled in two stages, content planning (what to say), andcontent

planning
sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

24.4 • THE DIALOGUE-STATE ARCHITECTURE 25

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city

centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 24.16 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

Fig. 24.16 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurant
with every possible attribute in many possible differently worded sentences. There-
fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization

words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 24.17 shows the result of delexicalizing the training
sentences in Fig. 24.16.

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 24.17 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter
alia), trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski
et al., 2018). The input to the encoder is a sequence of tokens xt that represent
the dialogue act and its arguments. Thus the dialogue act RECOMMEND and the
attribute/value pairs service:decent, cuisine:null might be represented as a flat se-
quence of tokens (Nayak et al., 2017), each mapped to a learned embedding wt , as
shown in Fig. 24.18.

The encoder reads all the input slot/value representations, and the decoder out-
puts the following delexicalized English sentence:

restaurant name has decent service

We can then use the input frame from the content planner to relexicalize (fill in therelexicalize

exact restaurant or neighborhood or cuisine) resulting in:

Au Midi has decent service

26 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

decentservice:RECOMMEND cuisine: null

[name] has decent service

ENCODER

DECODER

Figure 24.18 An encoder decoder sentence realizer mapping slots/fillers to English.

Generating Clarification Questions

It’s also possible to design NLG algorithms that are specific to a particular dialogue
act. For example, consider the task of generating clarification questions, in casesclarification

questions
where the speech recognition fails to understand some part of the user’s utterance.
While it is possible to use the generic dialogue act REJECT (“Please repeat”, or “I
don’t understand what you said”), studies of human conversations show that humans
instead use targeted clarification questions that reprise elements of the misunder-
standing (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).

24.5 Evaluating Dialogue Systems

Evaluation is crucial in dialogue system design. Chatbots and task-based systems are
generally evaluated differently, since they have different goals; task-based systems
have to complete a task like booking a flight; chatbots have a different kind of goal,
like being enjoyable to users.

24.5.1 Evaluating Chatbots
Chatbots are evaluated by humans, who assign a score. This can be the human who
talked to the chatbot (participant evaluation) or a third party who reads a transcript
of a human/chatbot conversation (observer evaluation).

In the participant evaluation of See et al. (2019), the human evaluator chats with
the model for six turns and rates the chatbot on 8 dimensions capturing conversa-
tional quality: avoiding repetition, interestingness, making sense, fluency, listening,
inquisitiveness, humanness and engagingness. A few examples:

Engagingness How much did you enjoy talking to this user?
• Not at all • A little • Somewhat • A lot

Avoiding Repetition How repetitive was this user?

24.5 • EVALUATING DIALOGUE SYSTEMS 27

• Repeated themselves over and over • Sometimes said the same thing twice
• Always said something new

Making sense How often did this user say something which did NOT make sense?
• Never made any sense • Most responses didn’t make sense • Some re-
sponses didn’t make sense • Everything made perfect sense

Observer evaluations use third party annotators to look at the text of a complete
conversation. Sometimes we’re interested in having raters assign a score to each
system turn; for example (Artstein et al., 2009) have raters mark how coherent each
turn is. Often, however, we just want a single high-level score to know if system A
is better than system B. The acute-eval metric (Li et al., 2019) is such an observeracute-eval

evaluation in which annotators look at two separate human-computer conversations
(A and B) and choose the one in which the dialogue system participant performed
better (interface shown in Fig. 24.19). They answer the following 4 questions (with
these particular wordings shown to lead to high agreement):

Engagingness Who would you prefer to talk to for a long conversation?
Interestingness If you had to say one of these speakers is interesting and one is

boring, who would you say is more interesting?
Humanness Which speaker sounds more human?
Knowledgeable If you had to say that one speaker is more knowledgeable and one

is more ignorant, who is more knowledgeable?

Figure 24.19 The ACUTE-EVAL method asks annotators to compare two dialogues and
choose between Speaker 1 (light blue) and Speaker 2 (dark blue), independent of the gray
speaker. Figure from Li et al. (2019).

28 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

Automatic evaluations are generally not used for chatbots. That’s because com-
putational measures of generation performance like BLEU or ROUGE or embed-
ding dot products between a chatbot’s response and a human response correlate very
poorly with human judgments (Liu et al., 2016). These methods perform poorly be-
cause there are so many possible responses to any given turn; simple word-overlap
or semantic similarity metrics work best when the space of responses is small and
lexically overlapping, which is true of generation tasks like machine translation or
possibly summarization, but definitely not dialogue.

However, research continues in ways to do more sophisticated automatic eval-
uations that go beyond word similarity. One novel paradigm is adversarial evalu-
ation (Bowman et al. 2016, Kannan and Vinyals 2016, Li et al. 2017), inspired byadversarial

evaluation
the Turing test. The idea is to train a “Turing-like” evaluator classifier to distinguish
between human-generated responses and machine-generated responses. The more
successful a response generation system is at fooling this evaluator, the better the
system.

24.5.2 Evaluating Task-Based Dialogue
For task-based dialogue, if the task is unambiguous, we can simply measure absolute
task success (did the system book the right plane flight, or put the right event on the
calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 24.20 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 24.20 User satisfaction survey, adapted from Walker et al. (2001).

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success: Task success can be measured by evaluating the cor-
rectness of the total solution. For a frame-based architecture, this might be slot
error rate, the percentage of slots that were filled with the correct values:

Slot Error Rate for a Sentence =
of inserted/deleted/subsituted slots
of total reference slots for sentence

(24.9)

For example consider a system given this sentence:

(24.10) Make an appointment with Chris at 10:30 in Gates 104

24.6 • DIALOGUE SYSTEM DESIGN 29

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate,
slot precision, recall, and F-score can also be used. Slot error rate is also sometimes
called concept error rate.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

Efficiency cost: Efficiency costs are measures of the system’s efficiency at helping
users. This can be measured by the total elapsed time for the dialogue in seconds,
the number of total turns or of system turns, or the total number of queries (Polifroni
et al., 1992). Other metrics include the number of system non-responses and the
“turn correction ratio”: the number of system or user turns that were used solely
to correct errors divided by the total number of turns (Danieli and Gerbino 1995,
Hirschman and Pao 1993).

Quality cost: Quality cost measures other aspects of the interactions that affect
user’s perception of the system. One such measure is the number of times the
ASR system failed to return any sentence, or the number of ASR rejection prompts.
Similar metrics include the number of times the user had to barge in (interrupt the
system), or the number of time-out prompts played when the user didn’t respond
quickly enough. Other quality metrics focus on how well the system understood and
responded to the user. The most important is the slot error rate described above,
but other components include the inappropriateness (verbose or ambiguous) of the
system’s questions, answers, and error messages or the correctness of each question,
answer, or error message (Zue et al. 1989, Polifroni et al. 1992).

24.6 Dialogue System Design

The user plays a more important role in dialogue systems than in most other areas of
speech and language processing, and thus the study of dialogue systems is closely
linked with the field of Human-Computer Interaction (HCI). The design of dialogue
strategies, prompts, and error messages, is often called voice user interface design,voice user

interface
and generally follows user-centered design principles (Gould and Lewis, 1985):

1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogues.

2. Build simulations and prototypes: A crucial tool in building dialogue systems
is the Wizard-of-Oz system. In wizard systems, the users interact with what theyWizard-of-Oz

system
think is a software agent but is in fact a human “wizard” disguised by a software
interface (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name

30 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

comes from the children’s book The Wizard of Oz (Baum, 1900), in which the wizard
turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. The wizard gets input
from the user, has a graphical interface to a
database to run sample queries based on the
user utterance, and then has a way to output
sentences, either by typing them or by some
combination of selecting from a menu and
typing.

The results of a Wizard-of-Oz system can
also be used as training data to train a pilot di-
alogue system. While Wizard-of-Oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard
to exactly simulate the errors, limitations, or
time constraints of a real system; results of
wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a well-known incident in dialogue de-
sign history, an early dialogue system required the user to press a key to interrupt the
system (Stifelman et al., 1993). But user testing showed users barged in, which led
to a redesign of the system to recognize overlapped speech. The iterative method
is also important for designing prompts that cause the user to respond in norma-
tive ways. It’s also important to incorporate value sensitive design, in which wevalue sensitive

design
carefully consider during the design process the benefits, harms and possible stake-
holders of the resulting system (Friedman et al. 2017, Bender and Friedman 2018).

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

24.6.1 Ethical Issues in Dialogue System Design

Ethical issues have been key to how we think about designing artificial agents since
well before we had conversational agents. Mary Shelley (depicted below) centered
her novel Frankenstein around the problem of creating agents without considering
ethical and humanistic concerns. One issue is the
safety of users. If users seek information from
conversational agents in safety-critical situations like
asking medical advice, or in emergency situations, or
when indicating the intentions of self-harm, incorrect
advice can be dangerous and even life-threatening.
For example (Bickmore et al., 2018) gave participants
medical problems to pose to three commercial di-
alogue systems (Siri, Alexa, Google Assistant) and
asked them to determine an action to take based on
the system responses; many of the proposed actions,

24.7 • SUMMARY 31

if actually taken, would have led to harm or death.
A system can also harm users by verbally attacking them, or creating represen-

tational harms (Blodgett et al., 2020) by generating abusive or harmful stereotypes
that demean particular groups of people. Both abuse and stereotypes can cause psy-
chological harm to users. Microsoft’s 2016 Tay chatbot, for example, was takenTay

offline 16 hours after it went live, when it began posting messages with racial slurs,
conspiracy theories, and personal attacks on its users. Tay had learned these biases
and actions from its training data, including from users who seemed to be purposely
teaching the system to repeat this kind of language (Neff and Nagy 2016). Hender-
son et al. (2017) examined dialogue datasets used to train corpus-based chatbots and
found toxic and abusive language, especially in social media corpora like Twitter
and Reddit, and indeed such language then appears in the text generated by lan-
guage models and dialogue systems (Gehman et al. 2020; Xu et al. 2020) which
can even amplify the bias from the training data (Dinan et al., 2020). Liu et al.
(2020) developed another method for investigating bias, testing how neural dialogue
systems responded to pairs of simulated user turns that are identical except for men-
tioning different genders or race. They found, for example, that simple changes like
using the word ‘she’ instead of ‘he’ in a sentence caused systems to respond more
offensively and with more negative sentiment.

Another important ethical issue is privacy. Already in the first days of ELIZA,
Weizenbaum pointed out the privacy implications of people’s revelations to the chat-
bot. The ubiquity of in-home dialogue agents means they may often overhear private
information (Henderson et al., 2017). If a chatbot is human-like, users are also more
likely to disclose private information, and less likely to worry about the harm of this
disclosure (Ischen et al., 2019). In general, chatbots that are trained on transcripts of
human-human or human-machine conversation must anonymize personally identifi-
able information.

Finally, chatbots raise important issues of gender equality in addition to textual
bias. Current chatbots are overwhelmingly given female names, likely perpetuating
the stereotype of a subservient female servant (Paolino, 2017). And when users
use sexually harassing language, most commercial chatbots evade or give positive
responses rather than responding in clear negative ways (Fessler, 2017).

These ethical issues are an important area of investigation, including finding
ways to mitigate problems of abuse and toxicity, like detecting and responding ap-
propriately to toxic contexts (Wolf et al. 2017, Dinan et al. 2020, Xu et al. 2020).
Value sensitive design, carefully considering possible harms in advance (Friedman
et al. 2017, Bender and Friedman 2018) is also important; (Dinan et al., 2021) give
a number of suggestions for best practices in dialogue system design. And because
dialogue systems by definition involve human participants, researchers also work on
these issues with the Institutional Review Boards (IRB) at their institutions, whoIRB

help protect the safety of experimental subjects.

24.7 Summary

Conversational agents are crucial speech and language processing applications that
are already widely used commercially.

• In human dialogue, speaking is a kind of action; these acts are referred to
as speech acts or dialogue acts. Speakers also attempt to achieve common

32 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

ground by acknowledging that they have understand each other. Conversation
also is characterized by turn structure and dialogue structure.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.

• For task-based dialogue, most commercial dialogue systems use the GUS or
frame-based architecture, in which the designer specifies frames consisting of
slots that the system must fill by asking the user.

• The dialogue-state architecture augments the GUS frame-and-slot architec-
ture with richer representations and more sophisticated algorithms for keeping
track of user’s dialogue acts, policies for generating its own dialogue acts, and
a natural language component.

• Dialogue systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations such
as Wizard-of-Oz systems, and the importance of iterative design and testing
on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.

Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialogue systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
processing began to be applied to dialogue slot filling (Miller et al. 1994, Pieraccini
et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in dialogue systems on phones like Apple’s SIRI (Bellegarda, 2013) and other
digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

The idea that utterances in a conversation are a kind of action being performed
by the speaker was due originally to the philosopher Wittgenstein (1953) but worked
out more fully by Austin (1962) and his student John Searle. Various sets of speech
acts have been defined over the years, and a rich linguistic and philosophical litera-
ture developed, especially focused on explaining the use of indirect speech acts.

The idea of dialogue acts draws also from a number of other sources, including
the ideas of adjacency pairs, pre-sequences, and other aspects of the international
properties of human conversation developed in the field of conversation analysisconversation

analysis

BIBLIOGRAPHICAL AND HISTORICAL NOTES 33

(see Levinson (1983) for an introduction to the field).
This idea that acts set up strong local dialogue expectations was also prefigured

by Firth (1935, p. 70), in a famous quotation:

Most of the give-and-take of conversation in our everyday life is stereotyped
and very narrowly conditioned by our particular type of culture. It is a sort
of roughly prescribed social ritual, in which you generally say what the other
fellow expects you, one way or the other, to say.

Another important research thread modeled dialogue as a kind of collaborative
behavior, including the ideas of common ground (Clark and Marshall, 1981), ref-
erence as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention
(Levesque et al., 1990), and shared plans (Grosz and Sidner, 1980).

The dialogue-state model was also strongly informed by analytic work on the
linguistic properties of dialogue acts and on methods for their detection (Sag and
Liberman 1975, Hinkelman and Allen 1989, Nagata and Morimoto 1994, Goodwin
1996, Chu-Carroll 1998, Shriberg et al. 1998, Stolcke et al. 2000, Gravano et al.
2012).

Two important lines of research that we were unable to cover in the chapter fo-
cused on the computational properties of conversational structure. One line, first
suggested by Bruce (1975), suggested that since speech acts are actions, they should
be planned like other actions, and drew on the AI planning literature (Fikes and Nils-
son, 1971). An agent seeking to find out some information can come up with the plan
of asking the interlocutor for the information. An agent hearing an utterance can in-
terpret a speech act by running the planner “in reverse”, using inference rules to infer
from what the interlocutor said what the plan might have been. Plan-based models
of dialogue are referred to as BDI models because such planners model the beliefs,BDI

desires, and intentions (BDI) of the agent and interlocutor. BDI models of dialogue
were first introduced by Allen, Cohen, Perrault, and their colleagues in a number of
influential papers showing how speech acts could be generated (Cohen and Perrault,
1979) and interpreted (Perrault and Allen 1980, Allen and Perrault 1980). At the
same time, Wilensky (1983) introduced plan-based models of understanding as part
of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical struc-
ture of dialogue. Grosz’s pioneering 1977 dissertation first showed that “task-oriented
dialogues have a structure that closely parallels the structure of the task being per-
formed” (p. 27), leading to her work with Sidner and others showing how to use
similar notions of intention and plans to model discourse structure and coherence in
dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of intentional
structure in dialogue.

The idea of applying reinforcement learning to dialogue first came out of AT&T
and Bell Laboratories around the turn of the century with work on MDP dialogue
systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) along with work on cue
phrases, prosody, and rejection and confirmation. Reinforcement learning research
turned quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon
et al. 2006, Williams and Young 2007) applied to small slot-filling dialogue tasks.
Neural reinforcement learning models have been used both for chatbot systems, for
example simulating dialogues between two virtual agents, rewarding good conver-
sational properties like coherence and ease of answering (Li et al., 2016c), and for
task-oriented dialogue (Williams et al., 2017).

Dialogue state tracking quickly became an important problem for task-oriented
dialogue, and there is an influential by an annual evaluation of state-tracking algo-

34 CHAPTER 24 • CHATBOTS & DIALOGUE SYSTEMS

rithms (Williams et al., 2016b). Other important dialogue areas include the study of
affect in dialogue (Rashkin et al. 2019, Lin et al. 2019). See Gao et al. (2019) for a
survey of modern dialogue system architectures.

Exercises
24.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

24.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

24.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

24.4 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.

Exercises 35

Allen, J. and C. R. Perrault. 1980. Analyzing intention in
utterances. Artificial Intelligence, 15:143–178.

Artstein, R., S. Gandhe, J. Gerten, A. Leuski, and D. Traum.
2009. Semi-formal evaluation of conversational charac-
ters. In Languages: From Formal to Natural, pages 22–
35. Springer.

Austin, J. L. 1962. How to Do Things with Words. Harvard
University Press.

Awadallah, A. H., R. G. Kulkarni, U. Ozertem, and R. Jones.
2015. Charaterizing and predicting voice query reformu-
lation. CIKM-15.

Bach, K. and R. Harnish. 1979. Linguistic communication
and speech acts. MIT Press.

Baum, L. F. 1900. The Wizard of Oz. Available at Project
Gutenberg.

Bellegarda, J. R. 2013. Natural language technology in mo-
bile devices: Two grounding frameworks. In Mobile
Speech and Advanced Natural Language Solutions, pages
185–196. Springer.

Bender, E. M. and B. Friedman. 2018. Data statements for
natural language processing: Toward mitigating system
bias and enabling better science. TACL, 6:587–604.

Bickmore, T. W., H. Trinh, S. Olafsson, T. K. O’Leary,
R. Asadi, N. M. Rickles, and R. Cruz. 2018. Patient and
consumer safety risks when using conversational assis-
tants for medical information: An observational study of
Siri, Alexa, and Google Assistant. Journal of Medical
Internet Research, 20(9):e11510.

Blodgett, S. L., S. Barocas, H. Daumé III, and H. Wallach.
2020. Language (technology) is power: A critical survey
of “bias” in NLP. ACL.

Bobrow, D. G., R. M. Kaplan, M. Kay, D. A. Norman,
H. Thompson, and T. Winograd. 1977. GUS, A frame
driven dialog system. Artificial Intelligence, 8:155–173.

Bohus, D. and A. I. Rudnicky. 2005. Sorry, I didn’t catch
that! — An investigation of non-understanding errors and
recovery strategies. SIGDIAL.

Bowman, S. R., L. Vilnis, O. Vinyals, A. M. Dai, R. Joze-
fowicz, and S. Bengio. 2016. Generating sentences from
a continuous space. CoNLL.

Bruce, B. C. 1975. Generation as a social action. Proceed-
ings of TINLAP-1 (Theoretical Issues in Natural Lan-
guage Processing).

Budzianowski, P., T.-H. Wen, B.-H. Tseng, I. Casanueva,
S. Ultes, O. Ramadan, and M. Gašić. 2018. MultiWOZ -
a large-scale multi-domain wizard-of-Oz dataset for task-
oriented dialogue modelling. EMNLP.

Bulyko, I., K. Kirchhoff, M. Ostendorf, and J. Goldberg.
2005. Error-sensitive response generation in a spo-
ken language dialogue system. Speech Communication,
45(3):271–288.

Chu-Carroll, J. 1998. A statistical model for discourse act
recognition in dialogue interactions. Applying Machine
Learning to Discourse Processing. Papers from the 1998
AAAI Spring Symposium. Tech. rep. SS-98-01. AAAI
Press.

Chu-Carroll, J. and S. Carberry. 1998. Collaborative re-
sponse generation in planning dialogues. Computational
Linguistics, 24(3):355–400.

Chu-Carroll, J. and B. Carpenter. 1999. Vector-based nat-
ural language call routing. Computational Linguistics,
25(3):361–388.

Clark, H. H. 1996. Using Language. Cambridge University
Press.

Clark, H. H. and C. Marshall. 1981. Definite reference and
mutual knowledge. In A. K. Joshi, B. L. Webber, and
I. A. Sag, editors, Elements of Discourse Understanding,
pages 10–63. Cambridge.

Clark, H. H. and D. Wilkes-Gibbs. 1986. Referring as a col-
laborative process. Cognition, 22:1–39.

Cohen, M. H., J. P. Giangola, and J. Balogh. 2004. Voice
User Interface Design. Addison-Wesley.

Cohen, P. R. and C. R. Perrault. 1979. Elements of a plan-
based theory of speech acts. Cognitive Science, 3(3):177–
212.

Colby, K. M., F. D. Hilf, S. Weber, and H. C. Kraemer. 1972.
Turing-like indistinguishability tests for the validation of
a computer simulation of paranoid processes. Artificial
Intelligence, 3:199–221.

Colby, K. M., S. Weber, and F. D. Hilf. 1971. Artificial para-
noia. Artificial Intelligence, 2(1):1–25.

Cole, R. A., D. G. Novick, P. J. E. Vermeulen, S. Sutton,
M. Fanty, L. F. A. Wessels, J. H. de Villiers, J. Schalkwyk,
B. Hansen, and D. Burnett. 1997. Experiments with a
spoken dialogue system for taking the US census. Speech
Communication, 23:243–260.

Danescu-Niculescu-Mizil, C. and L. Lee. 2011. Chameleons
in imagined conversations: A new approach to under-
standing coordination of linguistic style in dialogs. 2nd
Workshop on Cognitive Modeling and Computational
Linguistics.

Danieli, M. and E. Gerbino. 1995. Metrics for evaluating
dialogue strategies in a spoken language system. AAAI
Spring Symposium on Empirical Methods in Discourse
Interpretation and Generation.

Dinan, E., G. Abercrombie, A. S. Bergman, S. Spruit,
D. Hovy, Y.-L. Boureau, and V. Rieser. 2021. Antici-
pating safety issues in e2e conversational ai: Framework
and tooling. ArXiv, abs/2107.03451.

Dinan, E., A. Fan, A. Williams, J. Urbanek, D. Kiela, and
J. Weston. 2020. Queens are powerful too: Mitigating
gender bias in dialogue generation. EMNLP.

Dinan, E., S. Roller, K. Shuster, A. Fan, M. Auli, and J. We-
ston. 2019. Wizard of Wikipedia: Knowledge-powered
conversational agents. ICLR.

Fazel-Zarandi, M., S.-W. Li, J. Cao, J. Casale, P. Henderson,
D. Whitney, and A. Geramifard. 2017. Learning robust
dialog policies in noisy environments. Conversational AI
Workshop (NIPS).

Fessler, L. 2017. We tested bots like Siri and Alexa to see
who would stand up to sexual harassment. Quartz. Feb
22, 2017. https://qz.com/911681/.

Fikes, R. E. and N. J. Nilsson. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence, 2:189–208.

Firth, J. R. 1935. The technique of semantics. Transactions
of the philological society, 34(1):36–73.

36 Chapter 24 • Chatbots & Dialogue Systems

Forchini, P. 2013. Using movie corpora to explore spo-
ken American English: Evidence from multi-dimensional
analysis. In J. Bamford, S. Cavalieri, and G. Diani, ed-
itors, Variation and Change in Spoken and Written Dis-
course: Perspectives from corpus linguistics, pages 123–
136. Benjamins.

Fraser, N. M. and G. N. Gilbert. 1991. Simulating speech
systems. Computer Speech and Language, 5:81–99.

Friedman, B., D. G. Hendry, and A. Borning. 2017. A sur-
vey of value sensitive design methods. Foundations and
Trends in Human-Computer Interaction, 11(2):63–125.

Gao, S., A. Sethi, S. Aggarwal, T. Chung, and D. Hakkani-
Tür. 2019. Dialog state tracking: A neural reading com-
prehension approach. SIGDIAL.

Gehman, S., S. Gururangan, M. Sap, Y. Choi, and N. A.
Smith. 2020. RealToxicityPrompts: Evaluating neu-
ral toxic degeneration in language models. Findings of
EMNLP.

Ginzburg, J. and I. A. Sag. 2000. Interrogative Investiga-
tions: the Form, Meaning and Use of English Interroga-
tives. CSLI.

Godfrey, J., E. Holliman, and J. McDaniel. 1992. SWITCH-
BOARD: Telephone speech corpus for research and de-
velopment. ICASSP.

Goldberg, J., M. Ostendorf, and K. Kirchhoff. 2003. The im-
pact of response wording in error correction subdialogs.
ISCA Tutorial and Research Workshop on Error Handling
in Spoken Dialogue Systems.

Good, M. D., J. A. Whiteside, D. R. Wixon, and S. J.
Jones. 1984. Building a user-derived interface. CACM,
27(10):1032–1043.

Goodwin, C. 1996. Transparent vision. In E. Ochs, E. A.
Schegloff, and S. A. Thompson, editors, Interaction and
Grammar, pages 370–404. Cambridge University Press.

Gopalakrishnan, K., B. Hedayatnia, Q. Chen, A. Gottardi,
S. Kwatra, A. Venkatesh, R. Gabriel, and D. Hakkani-
Tür. 2019. Topical-chat: Towards knowledge-grounded
open-domain conversations. INTERSPEECH.

Gould, J. D., J. Conti, and T. Hovanyecz. 1983. Compos-
ing letters with a simulated listening typewriter. CACM,
26(4):295–308.

Gould, J. D. and C. Lewis. 1985. Designing for usabil-
ity: Key principles and what designers think. CACM,
28(3):300–311.

Gravano, A., J. Hirschberg, and Š. Beňuš. 2012. Affirma-
tive cue words in task-oriented dialogue. Computational
Linguistics, 38(1):1–39.

Grice, H. P. 1975. Logic and conversation. In P. Cole and
J. L. Morgan, editors, Speech Acts: Syntax and Semantics
Volume 3, pages 41–58. Academic Press.

Grice, H. P. 1978. Further notes on logic and conversation.
In P. Cole, editor, Pragmatics: Syntax and Semantics Vol-
ume 9, pages 113–127. Academic Press.

Grosz, B. J. 1977. The Representation and Use of Focus
in Dialogue Understanding. Ph.D. thesis, University of
California, Berkeley.

Grosz, B. J. and C. L. Sidner. 1980. Plans for discourse. In
P. R. Cohen, J. Morgan, and M. E. Pollack, editors, Inten-
tions in Communication, pages 417–444. MIT Press.

Guindon, R. 1988. A multidisciplinary perspective on di-
alogue structure in user-advisor dialogues. In R. Guin-
don, editor, Cognitive Science and Its Applications for
Human-Computer Interaction, pages 163–200. Lawrence
Erlbaum.

Hancock, B., A. Bordes, P.-E. Mazaré, and J. Weston. 2019.
Learning from dialogue after deployment: Feed yourself,
chatbot! ACL.

Harris, R. A. 2005. Voice Interaction Design: Crafting the
New Conversational Speech Systems. Morgan Kaufmann.

Henderson, P., K. Sinha, N. Angelard-Gontier, N. R. Ke,
G. Fried, R. Lowe, and J. Pineau. 2017. Ethical chal-
lenges in data-driven dialogue systems. AAAI/ACM AI
Ethics and Society Conference.

Hinkelman, E. A. and J. Allen. 1989. Two constraints on
speech act ambiguity. ACL.

Hirschberg, J., D. J. Litman, and M. Swerts. 2001. Identi-
fying user corrections automatically in spoken dialogue
systems. NAACL.

Hirschman, L. and C. Pao. 1993. The cost of errors in a
spoken language system. EUROSPEECH.

Humeau, S., K. Shuster, M.-A. Lachaux, and J. Weston.
2020. Poly-encoders: Transformer architectures and pre-
training strategies for fast and accurate multi-sentence
scoring. ICLR.

Isbell, C. L., M. Kearns, D. Kormann, S. Singh, and P. Stone.
2000. Cobot in LambdaMOO: A social statistics agent.
AAAI/IAAI.

Ischen, C., T. Araujo, H. Voorveld, G. van Noort, and
E. Smit. 2019. Privacy concerns in chatbot interactions.
International Workshop on Chatbot Research and De-
sign.

Jefferson, G. 1972. Side sequences. In D. Sudnow, editor,
Studies in social interaction, pages 294–333. Free Press,
New York.

Kannan, A. and O. Vinyals. 2016. Adversarial evaluation of
dialogue models. NIPS 2016 Workshop on Adversarial
Training.

Landauer, T. K., editor. 1995. The Trouble with Computers:
Usefulness, Usability, and Productivity. MIT Press.

Lemon, O., K. Georgila, J. Henderson, and M. Stuttle. 2006.
An ISU dialogue system exhibiting reinforcement learn-
ing of dialogue policies: Generic slot-filling in the TALK
in-car system. EACL.

Levesque, H. J., P. R. Cohen, and J. H. T. Nunes. 1990. On
acting together. AAAI. Morgan Kaufmann.

Levin, E., R. Pieraccini, and W. Eckert. 2000. A stochastic
model of human-machine interaction for learning dialog
strategies. IEEE Transactions on Speech and Audio Pro-
cessing, 8:11–23.

Levinson, S. C. 1983. Conversational Analysis, chapter 6.
Cambridge University Press.

Levow, G.-A. 1998. Characterizing and recognizing spoken
corrections in human-computer dialogue. COLING-ACL.

Li, J., M. Galley, C. Brockett, J. Gao, and B. Dolan. 2016a.
A diversity-promoting objective function for neural con-
versation models. NAACL HLT.

Li, J., W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Ju-
rafsky. 2016b. Deep reinforcement learning for dialogue
generation. EMNLP.

Exercises 37

Li, J., W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and
J. Gao. 2016c. Deep reinforcement learning for dialogue
generation. EMNLP.

Li, J., W. Monroe, T. Shi, S. Jean, A. Ritter, and D. Jurafsky.
2017. Adversarial learning for neural dialogue genera-
tion. EMNLP.

Li, M., J. Weston, and S. Roller. 2019. Acute-eval: Improved
dialogue evaluation with optimized questions and multi-
turn comparisons. NeurIPS19 Workshop on Conversa-
tional AI.

Lin, Z., A. Madotto, J. Shin, P. Xu, and P. Fung. 2019.
MoEL: Mixture of empathetic listeners. EMNLP.

Lison, P. and J. Tiedemann. 2016. Opensubtitles2016: Ex-
tracting large parallel corpora from movie and tv subti-
tles. LREC.

Litman, D. J. 1985. Plan Recognition and Discourse Anal-
ysis: An Integrated Approach for Understanding Dia-
logues. Ph.D. thesis, University of Rochester, Rochester,
NY.

Litman, D. J. and J. Allen. 1987. A plan recognition model
for subdialogues in conversation. Cognitive Science,
11:163–200.

Litman, D. J., M. Swerts, and J. Hirschberg. 2000. Pre-
dicting automatic speech recognition performance using
prosodic cues. NAACL.

Litman, D. J., M. A. Walker, and M. Kearns. 1999. Auto-
matic detection of poor speech recognition at the dialogue
level. ACL.

Liu, C.-W., R. T. Lowe, I. V. Serban, M. Noseworthy,
L. Charlin, and J. Pineau. 2016. How NOT to evalu-
ate your dialogue system: An empirical study of unsu-
pervised evaluation metrics for dialogue response gener-
ation. EMNLP.

Liu, H., J. Dacon, W. Fan, H. Liu, Z. Liu, and J. Tang. 2020.
Does gender matter? Towards fairness in dialogue sys-
tems. COLING.

Lochbaum, K. E., B. J. Grosz, and C. L. Sidner. 2000. Dis-
course structure and intention recognition. In R. Dale,
H. Moisl, and H. L. Somers, editors, Handbook of Natu-
ral Language Processing. Marcel Dekker.

Miller, S., R. J. Bobrow, R. Ingria, and R. Schwartz. 1994.
Hidden understanding models of natural language. ACL.

Mrkšić, N., D. Ó Séaghdha, T.-H. Wen, B. Thomson, and
S. Young. 2017. Neural belief tracker: Data-driven dia-
logue state tracking. ACL.

Nagata, M. and T. Morimoto. 1994. First steps toward statis-
tical modeling of dialogue to predict the speech act type
of the next utterance. Speech Communication, 15:193–
203.

Nayak, N., D. Hakkani-Tür, M. A. Walker, and L. P. Heck.
2017. To plan or not to plan? discourse planning in
slot-value informed sequence to sequence models for lan-
guage generation. INTERSPEECH.

Neff, G. and P. Nagy. 2016. Talking to bots: Symbiotic
agency and the case of Tay. International Journal of
Communication, 10:4915–4931.

Nielsen, J. 1992. The usability engineering life cycle. IEEE
Computer, 25(3):12–22.

Norman, D. A. 1988. The Design of Everyday Things. Basic
Books.

Paolino, J. 2017. Google Home vs Alexa: Two
simple user experience design gestures that de-
lighted a female user. Medium. Jan 4,
2017. https://medium.com/startup-grind/

google-home-vs-alexa-56e26f69ac77.

Paranjape, A., A. See, K. Kenealy, H. Li, A. Hardy, P. Qi,
K. R. Sadagopan, N. M. Phu, D. Soylu, and C. D. Man-
ning. 2020. Neural generation meets real people: Towards
emotionally engaging mixed-initiative conversations. 3rd
Proceedings of Alexa Prize.

Pearl, C. 2017. Designing Voice User Interfaces: Principles
of Conversational Experiences. O’Reilly.

Perrault, C. R. and J. Allen. 1980. A plan-based analysis of
indirect speech acts. American Journal of Computational
Linguistics, 6(3-4):167–182.

Pieraccini, R., E. Levin, and C.-H. Lee. 1991. Stochastic
representation of conceptual structure in the ATIS task.
Speech and Natural Language Workshop.

Polifroni, J., L. Hirschman, S. Seneff, and V. W. Zue. 1992.
Experiments in evaluating interactive spoken language
systems. HLT.

Purver, M. 2004. The theory and use of clarification requests
in dialogue. Ph.D. thesis, University of London.

Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, and
I. Sutskever. 2019. Language models are unsupervised
multitask learners. OpenAI tech report.

Ram, A., R. Prasad, C. Khatri, A. Venkatesh, R. Gabriel,
Q. Liu, J. Nunn, B. Hedayatnia, M. Cheng, A. Na-
gar, E. King, K. Bland, A. Wartick, Y. Pan, H. Song,
S. Jayadevan, G. Hwang, and A. Pettigrue. 2017. Con-
versational AI: The science behind the Alexa Prize. 1st
Proceedings of Alexa Prize.

Rashkin, H., E. M. Smith, M. Li, and Y.-L. Boureau. 2019.
Towards empathetic open-domain conversation models:
A new benchmark and dataset. ACL.

Ritter, A., C. Cherry, and B. Dolan. 2010. Unsupervised
modeling of twitter conversations. NAACL HLT.

Ritter, A., C. Cherry, and B. Dolan. 2011. Data-driven re-
sponse generation in social media. EMNLP.

Roller, S., E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu,
J. Xu, M. Ott, E. M. Smith, Y.-L. Boureau, and J. We-
ston. 2021. Recipes for building an open-domain chatbot.
EACL.

Roy, N., J. Pineau, and S. Thrun. 2000. Spoken dialogue
management using probabilistic reasoning. ACL.

Sacks, H., E. A. Schegloff, and G. Jefferson. 1974. A sim-
plest systematics for the organization of turn-taking for
conversation. Language, 50(4):696–735.

Sag, I. A. and M. Y. Liberman. 1975. The intonational dis-
ambiguation of indirect speech acts. In CLS-75, pages
487–498. University of Chicago.

Schegloff, E. A. 1968. Sequencing in conversational open-
ings. American Anthropologist, 70:1075–1095.

See, A., S. Roller, D. Kiela, and J. Weston. 2019. What
makes a good conversation? how controllable attributes
affect human judgments. NAACL HLT.

38 Chapter 24 • Chatbots & Dialogue Systems

Serban, I. V., R. Lowe, P. Henderson, L. Charlin, and
J. Pineau. 2018. A survey of available corpora for build-
ing data-driven dialogue systems: The journal version.
Dialogue & Discourse, 9(1):1–49.

Shang, L., Z. Lu, and H. Li. 2015. Neural responding ma-
chine for short-text conversation. ACL.

Shriberg, E., R. Bates, P. Taylor, A. Stolcke, D. Jurafsky,
K. Ries, N. Coccaro, R. Martin, M. Meteer, and C. Van
Ess-Dykema. 1998. Can prosody aid the automatic clas-
sification of dialog acts in conversational speech? Lan-
guage and Speech (Special Issue on Prosody and Conver-
sation), 41(3-4):439–487.

Singh, S. P., D. J. Litman, M. Kearns, and M. A. Walker.
2002. Optimizing dialogue management with reinforce-
ment learning: Experiments with the NJFun system.
JAIR, 16:105–133.

Smith, V. L. and H. H. Clark. 1993. On the course of an-
swering questions. Journal of Memory and Language,
32:25–38.

Sordoni, A., M. Galley, M. Auli, C. Brockett, Y. Ji,
M. Mitchell, J.-Y. Nie, J. Gao, and B. Dolan. 2015. A
neural network approach to context-sensitive generation
of conversational responses. NAACL HLT.

Stalnaker, R. C. 1978. Assertion. In P. Cole, editor, Prag-
matics: Syntax and Semantics Volume 9, pages 315–332.
Academic Press.

Stifelman, L. J., B. Arons, C. Schmandt, and E. A. Hulteen.
1993. VoiceNotes: A speech interface for a hand-held
voice notetaker. INTERCHI 1993.

Stolcke, A., K. Ries, N. Coccaro, E. Shriberg, R. Bates,
D. Jurafsky, P. Taylor, R. Martin, M. Meteer, and C. Van
Ess-Dykema. 2000. Dialogue act modeling for automatic
tagging and recognition of conversational speech. Com-
putational Linguistics, 26(3):339–371.

Stoyanchev, S. and M. Johnston. 2015. Localized error
detection for targeted clarification in a virtual assistant.
ICASSP.

Stoyanchev, S., A. Liu, and J. Hirschberg. 2013. Modelling
human clarification strategies. SIGDIAL.

Stoyanchev, S., A. Liu, and J. Hirschberg. 2014. Towards
natural clarification questions in dialogue systems. AISB
symposium on questions, discourse and dialogue.

Suendermann, D., K. Evanini, J. Liscombe, P. Hunter,
K. Dayanidhi, and R. Pieraccini. 2009. From rule-
based to statistical grammars: Continuous improvement
of large-scale spoken dialog systems. ICASSP.

Swerts, M., D. J. Litman, and J. Hirschberg. 2000. Correc-
tions in spoken dialogue systems. ICSLP.

Vijayakumar, A. K., M. Cogswell, R. R. Selvaraju, Q. Sun,
S. Lee, D. Crandall, and D. Batra. 2018. Diverse beam
search: Decoding diverse solutions from neural sequence
models. AAAI.

Vinyals, O. and Q. V. Le. 2015. A neural conversational
model. ICML Deep Learning Workshop.

Wade, E., E. Shriberg, and P. J. Price. 1992. User behaviors
affecting speech recognition. ICSLP.

Walker, M. A. 2000. An application of reinforcement learn-
ing to dialogue strategy selection in a spoken dialogue
system for email. JAIR, 12:387–416.

Walker, M. A., J. C. Fromer, and S. S. Narayanan. 1998.
Learning optimal dialogue strategies: A case study of a
spoken dialogue agent for email. COLING/ACL.

Walker, M. A., C. A. Kamm, and D. J. Litman. 2001. To-
wards developing general models of usability with PAR-
ADISE. Natural Language Engineering: Special Issue on
Best Practice in Spoken Dialogue Systems, 6(3):363–377.

Walker, M. A. and S. Whittaker. 1990. Mixed initiative in
dialogue: An investigation into discourse segmentation.
ACL.

Ward, W. and S. Issar. 1994. Recent improvements in the
CMU spoken language understanding system. HLT.

Weinschenk, S. and D. T. Barker. 2000. Designing Effective
Speech Interfaces. Wiley.

Weizenbaum, J. 1966. ELIZA – A computer program for the
study of natural language communication between man
and machine. CACM, 9(1):36–45.

Wen, T.-H., M. Gašić, D. Kim, N. Mrkšić, P.-H. Su,
D. Vandyke, and S. J. Young. 2015a. Stochastic language
generation in dialogue using recurrent neural networks
with convolutional sentence reranking. SIGDIAL.

Wen, T.-H., M. Gašić, N. Mrkšić, P.-H. Su, D. Vandyke, and
S. J. Young. 2015b. Semantically conditioned LSTM-
based natural language generation for spoken dialogue
systems. EMNLP.

Wilensky, R. 1983. Planning and Understanding: A Com-
putational Approach to Human Reasoning. Addison-
Wesley.

Williams, J. D., K. Asadi, and G. Zweig. 2017. Hybrid code
networks: practical and efficient end-to-end dialog con-
trol with supervised and reinforcement learning. ACL.

Williams, J. D., A. Raux, and M. Henderson. 2016a. The di-
alog state tracking challenge series: A review. Dialogue
& Discourse, 7(3):4–33.

Williams, J. D., A. Raux, and M. Henderson. 2016b. The di-
alog state tracking challenge series: A review. Dialogue
& Discourse, 7(3):4–33.

Williams, J. D. and S. J. Young. 2007. Partially observ-
able markov decision processes for spoken dialog sys-
tems. Computer Speech and Language, 21(1):393–422.

Wittgenstein, L. 1953. Philosophical Investigations. (Trans-
lated by Anscombe, G.E.M.). Blackwell.

Wolf, M. J., K. W. Miller, and F. S. Grodzinsky. 2017. Why
we should have seen that coming: Comments on Mi-
crosoft’s Tay “experiment,” and wider implications. The
ORBIT Journal, 1(2):1–12.

Xu, J., D. Ju, M. Li, Y.-L. Boureau, J. Weston, and E. Dinan.
2020. Recipes for safety in open-domain chatbots. ArXiv
preprint arXiv:2010.07079.

Yan, Z., N. Duan, J.-W. Bao, P. Chen, M. Zhou, Z. Li, and
J. Zhou. 2016. DocChat: An information retrieval ap-
proach for chatbot engines using unstructured documents.
ACL.

Yankelovich, N., G.-A. Levow, and M. Marx. 1995. Design-
ing SpeechActs: Issues in speech user interfaces. CHI-95.

Young, S. J., M. Gašić, S. Keizer, F. Mairesse, J. Schatz-
mann, B. Thomson, and K. Yu. 2010. The Hidden Infor-
mation State model: A practical framework for POMDP-
based spoken dialogue management. Computer Speech &
Language, 24(2):150–174.

Exercises 39

Zhou, L., J. Gao, D. Li, and H.-Y. Shum. 2020. The de-
sign and implementation of XiaoIce, an empathetic social
chatbot. Computational Linguistics, 46(1):53–93.

Zue, V. W., J. Glass, D. Goodine, H. Leung, M. Phillips,
J. Polifroni, and S. Seneff. 1989. Preliminary evaluation
of the VOYAGER spoken language system. Speech and
Natural Language Workshop.

