
Voice & Auditory Interaction
Janne Pylkkönen janne@speechly.com
Ari Nykänen ari@speechly.com

Feb 22nd 2020

About us
Speechly develops a real-time voice interface API for web and mobile.

● A venture funded start-up founded in 2016
● Currently 11 employees based in Helsinki (tech) and Chicago (sales).
● Customers mostly based in the US
● Backed e.g. by Cherry Ventures, TQ Ventures, and (of course!) Business Finland

Input methods

GUI

Output methods

GUI

Text Text

V
IS
IO
N

Speech Speech

A
U
D
IT
IO
N

Input methods

GUI

Output methods

GUI

Text Text

V
IS
IO
N

Speech Speech

A
U
D
IT
IO
N

Input methods

GUI

Output methods

GUI

Text Text

V
IS
IO
N

Speech Speech

A
U
D
IT
IO
N

Speechly’s approach

● User speech is processed in real-time using automatic speech recognition (ASR) and
streaming natural language understanding (NLU)

● Speech input (words, intents and entities from the NLU) can be used to control any
aspect of an app alongside GUI input

● Any output method can be used
○ GUI (or a VR/AR UI) is assumed to be the default option and there are ready-made GUI input components

for toggling listening on/off and GUI showing real-time transcript of user speech.

● Using speech for input and GUI for output enables uninterrupted input while providing
real-time feedback to the user.

Celia Hodent: The Gamer’s Brain: How Neuroscience and UX Can Impact Video Game Design (2017).

Conversational voice experience for
checking moisture of an office plant

Direct speech input vs conversational voice UI

● Direct speech input can be contrasted
against conversational designs in two ways:
○ Traditionally also the output channel is

speech, so the user and the system take
turns listening and speaking

○ In conversational designs the input is more
often modal; available input options change
depending on the input system state and
this needs to be communicated to the user.

Feedback without AI personas

● When using direct speech input the use of an AI
persona becomes optional or may even distract the
user.

● Yet the app still needs to cope with information
entered in fragments and ensure that the user can
tell the system state.

● For additional feedback, some kind of simple hint or
notification system usually suffices.

User jobs well-suited for speech input

● Selection from a large set of known options
○ Repeated tasks like adding groceries to a shopping list/cart
○ Issuing commands in a professional application with 100s of options

● Keyboardless use
○ Enhancing mobile UIs
○ VR

● Thoughts?

Challenging jobs for speech input

● Arbitrary names of people and places (ASR challenge)
● Dealing with strong accents (ASR challenge)
● Distinguishing between very similar expressions (ASR / NLU challenge)
● Any experiences?

Recovering from misunderstandings

● Eventually the speech input engine will make a mistake
● The key for a good voice UX is how quickly you can detect a mistake and how easily you can

recover from that
● To allow user to detect the mistake early, you can…

○ Display the speech-to-text transcript in real-time
○ Show and highlight any changes in the app state in real-time

● To recover from the mistakes you can enable…
○ Repeating the incorrect information
○ Clearing/undoing the incorrectly interpreted input
○ Providing information about supported phrases

Reach of manipulation (input)

Widget

Widget group

View

App

System

DIRECT
VISIBILITY OF
EFFECT

Reach of manipulation (input)

Widget

Widget group

View

App

System

DIRECT
VISIBILITY OF
EFFECT

Reach of app-level
speech input system
like Speechly

Widget reach Widget group reach

Reach of manipulation (input)

Designing for direct speech input

1. Discover the user jobs that you want to enable in your app
2. Learn about spoken expressions users would naturally use for each job
3. Tag and generalize the expressions for the natural language understanding (NLU)

system
4. Ensure it’s possible to map intents and keywords from the NLU system to app state

changes. Enable providing partial information.
5. Provide visual cues about the supported expressions in the GUI

User phrases for searching for flight options

“Book a flight from Miami to Helsinki for tomorrow.”

“One-way flight from Stockholm to London for 2 passengers.”

“To London.”

Tag the expressions for the natural language understanding (NLU) system

“Book a flight from Miami to Helsinki for tomorrow.”

“One-way flight from Stockholm to London for 2 passengers.”

“To London.”

Generalize the spoken expressions for the NLU system

“Book a flight
from [Miami | London | Helsinki]
to [Miami | London | Helsinki]
for $DATE.”

“Book a flight

“Book a flight
from Miami

“Book a flight
from Miami
to Helsinki

“Book a flight
from Miami
to Helsinki
for tomorrow.”

“Book a flight
from Miami
to Helsinki
for tomorrow.”

{intent: “book”,
words: [“BOOK”, “A”, …],
entities: [
{type: “from”,
value: “MIAMI”},

{type: “to”,
value: “HELSINKI”},

{type: “departure”,
value: “22/02/2022”}

]
}

Speechly’s Voice UI Design System

Learning and feedback systems

Next up
Speechly’s speech technology
Demo apps
Demo of NLU setup
CodePen fiddling

Just Say the Word! from Doppio Games

Speech control of VR/AR applications / Zoan

Experiments

● “Memory” of last selected device, room and verb (in smart home)
● Apply alterations to last item (in pizza ordering)
● Undo (in pizza ordering)
● Speech-controlled Pac Man

Thanks!
Janne Pylkkönen janne@speechly.com
Ari Nykänen ari@speechly.com

github.com/speechly

Speechly ASR+NLU
Technology in a Nutshell
Janne Pylkkönen

Feb 22nd 2022

Definitions
Utterance: Something a user says, typically a spoken sentence
or a command

Transcript: Written representation of the speech

Intent: The task the user wants to achieve. For example, in
utterance ”Turn off the living room lights” the intent could be
defined as ”turn_off”

Entities: “Parameters” of the intent. In the above example, we
can identify ”living room” and “lights” as entities.

Speechly API

Designs and implements
the front end UI

Defines 
intents and

entities

Speechly ML Engine

Transcript and
entities are returned

in real-time 
while the user is

speaking

Autonomously trains 
customised ML models 

for speech recognition and 
intent / entity detection

Model deployed to 
production

DeveloperEnd-user

Speechly SDKs

Components of a Speech Recognizer

Feature
extraction

Acoustic
model
 Decoder

Language
model
Lexicon

Text

Speech signal

Traditional (“hybrid”)

Feature
extraction

Acoustic
model
 Decoder

Language
model
Lexicon

Text

Speech signal

Traditional (“hybrid”)

Modern (“end-to-end”)

Deep
neural

network
Text

Components of a Speech Recognizer

End-to-end ASR: RNN-Transducer

Output is a probability
distribution over the
next word/token

Prediction network
resembles a language
model: Takes previous
words as inputs

Encoder takes
acoustic features
as input

RNN-T uses only the “left” context to predict the next symbol,
therefore it is suitable for streaming applications.

Trained with large amounts (e.g. 10000h+) of matched speech and
transcripts

Customizing the ASR Model

Fast Text-Only Domain Adaptation of RNN-Transducer Prediction Network

Janne Pylkkönen
1
, Antti Ukkonen

1,2
, Juho Kilpikoski

1
, Samu Tamminen

1
, Hannes Heikinheimo

1

1Speechly, Finland
2Department of Computer Science, University of Helsinki, Finland

firstname@speechly.com

Abstract

Adaption of end-to-end speech recognition systems to new tasks
is known to be challenging. A number of solutions have been
proposed which apply external language models with various
fusion methods, possibly with a combination of two-pass de-
coding. Also TTS systems have been used to generate adap-
tation data for the end-to-end models. In this paper we show
that RNN-transducer models can be effectively adapted to new
domains using only small amounts of textual data. By taking
advantage of model’s inherent structure, where the prediction
network is interpreted as a language model, we can apply fast
adaptation to the model. Adapting the model avoids the need for
complicated decoding time fusions and external language mod-
els. Using appropriate regularization, the prediction network
can be adapted to new domains while still retaining good gen-
eralization capabilities. We show with multiple ASR evaluation
tasks how this method can provide relative gains of 10–45% in
target task WER. We also share insights how RNN-transducer
prediction network performs as a language model.
Index Terms: automatic speech recognition, end-to-end mod-
els, RNN-transducer, adaptation, language model

1. Introduction

Over the recent years, the focus in automatic speech recognition
research has shifted from hybrid models to end-to-end (E2E)
systems. Traditional hybrid models consist of separate models
for acoustic, language, and pronunciation [1, 2], whereas E2E
models integrate all of these into a single network [3, 4, 5, 6].
The benefit of the hybrid models is that they can take advantage
of different data sources, especially large amounts of text-only
data. End-to-end models, on the other hand, are trained from
matched speech and transcriptions, so their exposure to differ-
ent language content is more limited.

A particularly interesting E2E architecture is the RNN-
transducer (RNN-T) [3, 4], which provides state-of-the-art per-
formance in a wide variety of streaming applications [6, 7]. De-
spite being an E2E architecture, RNN-T lends itself for a com-
pelling interpretation as having separate language and acoustic
models. However, some recent research have concluded that
such an interpretation may not always hold well [8]. Even
though it is possible to initialize the RNN-T prediction network
from a large text corpus, it has been unclear how much of the
predictive power of the initial language model (LM) remains
after the RNN-T has been trained with speech data.

To customize the E2E models for a particular domain, sev-
eral methods have been proposed [9, 6, 10, 7], including appli-
cation of external LMs, and using TTS-generated data to fine-
tune the network. Fusion methods require changes to the model
and/or decoding, whereas TTS-adaptation is a straightforward
extension of model fine-tuning. One of the most applied adap-
tation methods is the shallow fusion [9, 6, 11], where external

Prediction
Network P

Encoder
Network

Joint NetworkLM output

xi-1

P(xi-1)P(xi-1)

zt

p(Xi | xi-1, zt)p(Xi | xi-1)

SoftmaxSoftmax

L

Figure 1: We propose a domain adaptation method for fine-

tuning the prediction network P of a trained RNN-T (shown

in black). We first train a temporary LM output component de-

noted L (shown in red) that enables the fine-tuning of P with

generic neural LM adaptation methods. Neither L nor other

changes to the RNN-T model are required when decoding.

language model scores are added to the RNN-T scores during
decoding.

In this paper we present a simple yet effective RNN-T adap-
tation method, which requires only textual data. No speech data
is involved in the adaptation process, not even via a TTS sys-
tem. This text-only adaptation can be performed quickly, and
it does not require any modifications to the decoding or model
inference. The only additional requirement is the estimation of
a temporary LM output layer on top of the prediction network
(Fig. 1). With this output layer and suitable regularization, the
prediction network can be adapted as a neural LM, while still
remaining as a part of the RNN-T network. Using this RNN-T
adaptation we observe 10–45% relative word error rate (WER)
improvements in target tasks. In contrast to shallow fusion,
we show that these benefits can be obtained without substan-
tial degradation in out-of-adaptation-domain accuracy.

Besides their practical applicability, our results also con-
tribute to recent discussion about the role of the RNN-T pre-
diction network [8, 11]. In particular, we demonstrate that it
is useful to interpret the RNN-T prediction network as having
characteristics of an LM. This opens possibilities to using al-
gorithms with E2E architectures that have previously only been
applicable to hybrid models.

2. Adaptation of RNN-T Prediction

Network

2.1. RNN-T architecture

The RNN-transducer, shown in black in Fig. 1, was first pro-
posed by Graves [3, 4], and later refined by others [12, 6]. In
RNN-T models both the prediction and encoder components are
recurrent neural networks, typically LSTM stacks. Compared

Accepted to Interspeech 2021

ar
X

iv
:2

10
4.

11
12

7v
2

 [c
s.C

L]
 9

 Ju
n

20
21

Typically end-to-end models require matched speech and transcripts
for training and also for adaptation/fine-tuning

If only textual data is available for adaptation, one could use a TTS
system to produce matched speech and use that for adaptation

At Speechly, we have developed our own adaptation method, to
quickly customise the RNN-T model based on text-only data

Speech recognition tasks

Typical automatic speech recognition (ASR) tasks:

Keyword detection

Command-and-control

Search by speech

Dictation

Conversational interaction

Speech characteristics relating to the recognition task:

Isolated words vs. continuous speech

Speaker dependent vs. independent

Vocabulary size

Read speech, planned speech, conversational speech

Non-standard speech (accented, child speech, speech disorders)

Environmental noise

Distance to the microphone: close-talk, near-field, far-field

Harder

Easier

From Transcripts to Understanding
To refine the ASR outputs to something more usable, we need NLU
models (=Natural Language Understanding)

Intent detection (intent classification) is a text classification problem

Entity detection (entity extraction/recognition) is a sequence tagging
problem. As such, it is more difficult than pure text classification.

Entity and intent detection are typically done with separate models,
but there are e.g. transformer-based models which perform both
tasks at once. Model training requires annotated transcripts.

NLU models are typically relatively small compared to the ASR model.
This is possible as they utilise word embeddings to map the symbols
to a meaning-bearing vector space.

Additional challenge in Voice UIs: To appear responsive, entities (and
intents) should be extracted in a streaming manner, while the user is
speaking

