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About us
Speechly develops a real-time voice interface API for web and mobile.

● A venture funded start-up founded in 2016
● Currently 11 employees based in Helsinki (tech) and Chicago (sales).
● Customers mostly based in the US
● Backed e.g. by Cherry Ventures, TQ Ventures, and (of course!) Business Finland
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Speechly’s approach

● User speech is processed in real-time using automatic speech recognition (ASR) and 
streaming natural language understanding (NLU)

● Speech input (words, intents and entities from the NLU) can be used to control any 
aspect of an app alongside GUI input

● Any output method can be used
○ GUI (or a VR/AR UI) is assumed to be the default option and there are ready-made GUI input components 

for toggling listening on/off and GUI showing real-time transcript of user speech.

● Using speech for input and GUI for output enables uninterrupted input while providing 
real-time feedback to the user.



Celia Hodent: The Gamer’s Brain: How Neuroscience and UX Can Impact Video Game Design (2017). 



Conversational voice experience for 
checking moisture of an office plant

Direct speech input vs conversational voice UI

● Direct speech input can be contrasted 
against conversational designs in two ways:
○ Traditionally also the output channel is 

speech, so the user and the system take 
turns listening and speaking

○ In conversational designs the input is more 
often modal; available input options change 
depending on the input system state and 
this needs to be communicated to the user.



Feedback without AI personas

● When using direct speech input the use of an AI 
persona becomes optional or may even distract the 
user.

● Yet the app still needs to cope with information 
entered in fragments and ensure that the user can 
tell the system state.

● For additional feedback, some kind of simple hint or 
notification system usually suffices.



User jobs well-suited for speech input

● Selection from a large set of known options
○ Repeated tasks like adding groceries to a shopping list/cart
○ Issuing commands in a professional application with 100s of options

● Keyboardless use
○ Enhancing mobile UIs
○ VR

● Thoughts?



Challenging jobs for speech input

● Arbitrary names of people and places (ASR challenge)
● Dealing with strong accents (ASR challenge)
● Distinguishing between very similar expressions (ASR / NLU challenge)
● Any experiences?



Recovering from misunderstandings

● Eventually the speech input engine will make a mistake
● The key for a good voice UX is how quickly you can detect a mistake and how easily you can 

recover from that
● To allow user to detect the mistake early, you can…

○ Display the speech-to-text transcript in real-time
○ Show and highlight any changes in the app state in real-time

● To recover from the mistakes you can enable…
○ Repeating the incorrect information
○ Clearing/undoing the incorrectly interpreted input
○ Providing information about supported phrases
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like Speechly
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Reach of manipulation (input)



Designing for direct speech input

1. Discover the user jobs that you want to enable in your app
2. Learn about spoken expressions users would naturally use for each job
3. Tag and generalize the expressions for the natural language understanding (NLU) 

system
4. Ensure it’s possible to map intents and keywords from the NLU system to app state 

changes. Enable providing partial information.
5. Provide visual cues about the supported expressions in the GUI



User phrases for searching for flight options

“Book a flight from Miami to Helsinki for tomorrow.”

“One-way flight from Stockholm to London for 2 passengers.”

“To London.”



Tag the expressions for the natural language understanding (NLU) system

“Book a flight from Miami to Helsinki for tomorrow.”

“One-way flight from Stockholm to London for 2 passengers.”

“To London.”



Generalize the spoken expressions for the NLU system

“Book a flight
from [Miami | London | Helsinki]
to [Miami | London | Helsinki]
for $DATE.”



“Book a flight



“Book a flight 
from Miami



“Book a flight 
from Miami
to Helsinki



“Book a flight 
from Miami
to Helsinki
for tomorrow.”



“Book a flight 
from Miami
to Helsinki
for tomorrow.”

{intent: “book”,
words: [“BOOK”, “A”, …],
entities: [
{type: “from”,
value: “MIAMI”},

{type: “to”,
value: “HELSINKI”},

{type: “departure”,
value: “22/02/2022”}

]
}



Speechly’s Voice UI Design System



Learning and feedback systems



Next up
Speechly’s speech technology
Demo apps
Demo of NLU setup
CodePen fiddling



Just Say the Word! from Doppio Games



Speech control of VR/AR applications / Zoan 



Experiments

● “Memory” of last selected device, room and verb (in smart home)
● Apply alterations to last item (in pizza ordering)
● Undo (in pizza ordering)
● Speech-controlled Pac Man



Thanks! 
Janne Pylkkönen  janne@speechly.com
Ari Nykänen  ari@speechly.com

github.com/speechly
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Definitions
Utterance: Something a user says, typically a spoken sentence 
or a command

Transcript: Written representation of the speech

Intent: The task the user wants to achieve. For example, in 
utterance ”Turn off the living room lights” the intent could be 
defined as ”turn_off”

Entities: “Parameters” of the intent. In the above example, we 
can identify ”living room” and “lights” as entities.



Speechly API

Designs and implements 
the front end UI

Defines 
intents and 

entities

Speechly ML Engine

Transcript and 
entities are returned 

in real-time 
while the user is 

speaking

Autonomously trains 
customised ML models 

for speech recognition and 
intent / entity detection

Model deployed to 
production

DeveloperEnd-user

Speechly SDKs



Components of a Speech Recognizer
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End-to-end ASR: RNN-Transducer

Output is a probability 
distribution over the 
next word/token

Prediction network 
resembles a language 
model: Takes previous 
words as inputs

Encoder takes 
acoustic features 
as input

RNN-T uses only the “left” context to predict the next symbol, 
therefore it is suitable for streaming applications.

Trained with large amounts (e.g. 10000h+) of matched speech and 
transcripts



Customizing the ASR Model
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Abstract

Adaption of end-to-end speech recognition systems to new tasks
is known to be challenging. A number of solutions have been
proposed which apply external language models with various
fusion methods, possibly with a combination of two-pass de-
coding. Also TTS systems have been used to generate adap-
tation data for the end-to-end models. In this paper we show
that RNN-transducer models can be effectively adapted to new
domains using only small amounts of textual data. By taking
advantage of model’s inherent structure, where the prediction
network is interpreted as a language model, we can apply fast
adaptation to the model. Adapting the model avoids the need for
complicated decoding time fusions and external language mod-
els. Using appropriate regularization, the prediction network
can be adapted to new domains while still retaining good gen-
eralization capabilities. We show with multiple ASR evaluation
tasks how this method can provide relative gains of 10–45% in
target task WER. We also share insights how RNN-transducer
prediction network performs as a language model.
Index Terms: automatic speech recognition, end-to-end mod-
els, RNN-transducer, adaptation, language model

1. Introduction

Over the recent years, the focus in automatic speech recognition
research has shifted from hybrid models to end-to-end (E2E)
systems. Traditional hybrid models consist of separate models
for acoustic, language, and pronunciation [1, 2], whereas E2E
models integrate all of these into a single network [3, 4, 5, 6].
The benefit of the hybrid models is that they can take advantage
of different data sources, especially large amounts of text-only
data. End-to-end models, on the other hand, are trained from
matched speech and transcriptions, so their exposure to differ-
ent language content is more limited.

A particularly interesting E2E architecture is the RNN-
transducer (RNN-T) [3, 4], which provides state-of-the-art per-
formance in a wide variety of streaming applications [6, 7]. De-
spite being an E2E architecture, RNN-T lends itself for a com-
pelling interpretation as having separate language and acoustic
models. However, some recent research have concluded that
such an interpretation may not always hold well [8]. Even
though it is possible to initialize the RNN-T prediction network
from a large text corpus, it has been unclear how much of the
predictive power of the initial language model (LM) remains
after the RNN-T has been trained with speech data.

To customize the E2E models for a particular domain, sev-
eral methods have been proposed [9, 6, 10, 7], including appli-
cation of external LMs, and using TTS-generated data to fine-
tune the network. Fusion methods require changes to the model
and/or decoding, whereas TTS-adaptation is a straightforward
extension of model fine-tuning. One of the most applied adap-
tation methods is the shallow fusion [9, 6, 11], where external

Prediction 
Network P

Encoder 
Network

Joint NetworkLM output

xi-1

P(xi-1)P(xi-1)

zt

p(Xi | xi-1, zt)p(Xi | xi-1)

SoftmaxSoftmax

L

Figure 1: We propose a domain adaptation method for fine-

tuning the prediction network P of a trained RNN-T (shown

in black). We first train a temporary LM output component de-

noted L (shown in red) that enables the fine-tuning of P with

generic neural LM adaptation methods. Neither L nor other

changes to the RNN-T model are required when decoding.

language model scores are added to the RNN-T scores during
decoding.

In this paper we present a simple yet effective RNN-T adap-
tation method, which requires only textual data. No speech data
is involved in the adaptation process, not even via a TTS sys-
tem. This text-only adaptation can be performed quickly, and
it does not require any modifications to the decoding or model
inference. The only additional requirement is the estimation of
a temporary LM output layer on top of the prediction network
(Fig. 1). With this output layer and suitable regularization, the
prediction network can be adapted as a neural LM, while still
remaining as a part of the RNN-T network. Using this RNN-T
adaptation we observe 10–45% relative word error rate (WER)
improvements in target tasks. In contrast to shallow fusion,
we show that these benefits can be obtained without substan-
tial degradation in out-of-adaptation-domain accuracy.

Besides their practical applicability, our results also con-
tribute to recent discussion about the role of the RNN-T pre-
diction network [8, 11]. In particular, we demonstrate that it
is useful to interpret the RNN-T prediction network as having
characteristics of an LM. This opens possibilities to using al-
gorithms with E2E architectures that have previously only been
applicable to hybrid models.

2. Adaptation of RNN-T Prediction

Network

2.1. RNN-T architecture

The RNN-transducer, shown in black in Fig. 1, was first pro-
posed by Graves [3, 4], and later refined by others [12, 6]. In
RNN-T models both the prediction and encoder components are
recurrent neural networks, typically LSTM stacks. Compared
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Typically end-to-end models require matched speech and transcripts 
for training and also for adaptation/fine-tuning

If only textual data is available for adaptation, one could use a TTS 
system to produce matched speech and use that for adaptation

At Speechly, we have developed our own adaptation method, to 
quickly customise the RNN-T model based on text-only data



Speech recognition tasks

Typical automatic speech recognition (ASR) tasks:

Keyword detection

Command-and-control

Search by speech

Dictation

Conversational interaction


Speech characteristics relating to the recognition task:

Isolated words vs. continuous speech

Speaker dependent vs. independent

Vocabulary size

Read speech, planned speech, conversational speech

Non-standard speech (accented, child speech, speech disorders)

Environmental noise

Distance to the microphone: close-talk, near-field, far-field

Harder

Easier



From Transcripts to Understanding
To refine the ASR outputs to something more usable, we need NLU 
models (=Natural Language Understanding)

Intent detection (intent classification) is a text classification problem

Entity detection (entity extraction/recognition) is a sequence tagging 
problem. As such, it is more difficult than pure text classification.

Entity and intent detection are typically done with separate models, 
but there are e.g. transformer-based models which perform both 
tasks at once. Model training requires annotated transcripts.

NLU models are typically relatively small compared to the ASR model. 
This is possible as they utilise word embeddings to map the symbols 
to a meaning-bearing vector space.

Additional challenge in Voice UIs: To appear responsive, entities (and 
intents) should be extracted in a streaming manner, while the user is 
speaking 



