Quiz 4-1

Formulate a matrix equation.

$$
\left\{\begin{array}{c}
2 x+y=5 \\
x-3 y=-1
\end{array} \leftrightarrow\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
l \\
m
\end{array}\right]\right.
$$

Cramer's rule

Using a Determinant of a matrix

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
l \\
m
\end{array}\right], \quad\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c } \\
\rightarrow & x=\frac{\left|\begin{array}{ll}
l & b \\
m & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{l d-b m}{a d-b c}, y=\frac{\left|\begin{array}{cc}
a & l \\
c & m
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{a m-l c}{a d-b c}
\end{aligned}
$$

Quiz 4-2

Solve x and y using the Cramer's rule.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1
\end{array}\right],\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c } \\
\rightarrow & x=\frac{\left|\begin{array}{ll}
l & b \\
m & d
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{l d-b m}{a d-b c}, y=\frac{\left|\begin{array}{cc}
a & l \\
c & m
\end{array}\right|}{\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|}=\frac{a m-l c}{a d-b c}
\end{aligned}
$$

Quiz 5-1

- Formulate a matrix equation wrt I_{A} and I_{B} by formulating Kirchhoff's voltage laws across loops A and B.

Quiz 5-2

- Formulate a matrix equation wrt I_{A} and I_{B} based on the heuristic way.

Quiz 6

- Formulate a matrix equation heuristically for voltages at points A and B denoted as U_{A} and U_{B}.

