Quiz 3-1

This quiz is about voltage divider circuit.

What is the voltage U_{1} across resistance R_{1} ?

$$
U=3 \mathrm{~V}, R_{1}=2 \mathrm{k} \Omega, R_{2}=1 \mathrm{k} \Omega
$$

Quiz 3-2

This quiz is about current divider circuit.

What is the current I_{2} flowing on resistance R_{2} ?

Quiz 3-3

Derive the Thevenin's equivalent current source E_{T} and resistance R_{T} of the following circuit.

Quiz 3-4

Connect a resistor $R_{3}=1 \mathrm{k} \Omega$ as a load of the following two circuits and derive current I_{3} for each of the two circuits. Do we get the same I_{3} for the two circuits?

Connect a load here!

$$
J_{\mathrm{N}}=3 \mathrm{~mA}, R_{\mathrm{N}}=0.5 \mathrm{k} \Omega \quad E_{\mathrm{T}}=1.5 \mathrm{~V}, R_{\mathrm{T}}=0.5 \mathrm{k} \Omega
$$

Quiz 3-5

This quiz is about sources transforms.

Derive the Norton's equivalent current source J_{N} and

 resistance R_{N} of the following circuit.

$$
E=4 \mathrm{~V}, J=1 \mathrm{~mA}, R_{1}=R_{2}=1 \mathrm{k} \Omega
$$

Quiz 3-6

 superposition.We analyze the following circuit when a resistor $R_{3}=1 \mathrm{k} \Omega$ is connected as a load.
What is the current $I_{3 \mathrm{~J}}$ when turning off the voltage source E ?

$$
\begin{aligned}
& E=4 \mathrm{~V}, J=1 \mathrm{~mA} \\
& R_{1}=R_{2}=1 \mathrm{k} \Omega
\end{aligned}
$$

Answers

- 3-1: 2 V
- 3-2: 2 mA
- 3-3: $\mathrm{E}_{\mathrm{T}}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{N}}=0.5 \mathrm{kOhm}$
- 3-4: 1 mA
- 3-5: $\mathrm{J}_{\mathrm{N}}=3 \mathrm{~mA}, \mathrm{R}_{\mathrm{N}}=0.5 \mathrm{kOhm}$
- 3-6: -1/3 mA

