Quiz 3-1

This quiz is about voltage divider circuit.

What is the voltage U_1 across resistance R_1 ?

$U = 3 \text{ V}, R_1 = 2 \text{ k}\Omega, R_2 = 1 \text{ k}\Omega$

Quiz 3-2

This quiz is about current divider circuit.

What is the current I_2 flowing on resistance R_2 ?

 $I = 3 \text{ mA}, R_1 = 2 \text{ k}\Omega, R_2 = 1 \text{ k}\Omega$

Quiz 3-3

This quiz is about sources transforms.

Derive the Thevenin's equivalent current source E_{T} and resistance R_{T} of the following circuit.

 $J_N = 3 \text{ mA}, R_N = 0.5 \text{ k}\Omega$

Quiz 3-4

This quiz is about sources transforms.

Connect a resistor $R_3 = 1 \text{ k}\Omega$ as a load of the following two circuits and derive current I_3 for each of the two circuits. Do we get the same I_3 for the two circuits?

Quiz 3-5

This quiz is about sources transforms.

Derive the Norton's equivalent current source J_N and resistance R_N of the following circuit.

 $E = 4 \text{ V}, J = 1 \text{ mA}, R_1 = R_2 = 1 \text{ k}\Omega$

This quiz is about superposition.

Quiz 3-6

We analyze the following circuit when a resistor $R_3 = 1 \text{ k}\Omega$ is connected as a load.

What is the current I_{3I} when turning off the voltage source E?

Answers

- 3-1: 2 V
- 3-2: 2 mA
- 3-3: E_T = 1.5 V, R_N = 0.5 kOhm
- 3-4: 1 mA
- 3-5: J_N = 3 mA, R_N = 0.5 kOhm
- 3-6: -1/3 mA