
Math Camp - Calculus



Calculus

It’s great that we know a max exists, but it would be nice if we could
also solve for one.

Our existence proof isn’t super useful for this, we constructed a sequence
that converged to the max, but not really something we could
operationalize



Calculus

So let’s narrow down the set of points we need to check.

We know at a maximum a function can’t be increasing in any direction.
I How can we find where a function is increasing?
I Easy to do with linear functions.

y = a · x + b

This is strictly increasing in direction d iff a · d > 0.
I Can we do the same for non-linear functions?



Derivatives

If f : R→ R is linear, we can use the slope to determine whether it is
increasing or decreasing.

But slope doesn’t really make sense for non-linear functions. So we
define the derivative:

f ′(x) = lim
y→x

f (y)− f (x)
y − x .

Clearly cannot exist if f is not continuous at x . May not exist even if f is
continuous at x (e.g. f (x) = |x |). We say a function with a derivative
everywhere is differentiable.



Derivatives
As I’m sure you recall from your calculus course, there are a million
derivatives that had to memorize. Fortunately, there are a lot fewer that
you’ll see a lot in the first year. Some common ones
I f (x) = xk , f ′(x) = kxk−1.
I f (x) = ex , f ′(x) = ex

I f (x) = ln x , f ′(x) = 1
x .

I f (x) = k, f ′(x) = 0
And some helpful rules
I Linearity d

dx [f (x) + g(x)] = f ′(x) + g ′(x), d
dx af (x) = af ′(x).

I d
dx − f (x) = −f ′(x).

I Chain rule d
dx f (g(x)) = f ′(g(x))g ′(x).

I Product rule d
dx f (x)g(x) = f ′(x)g(x) + g ′(x)f (x).

I Quotient rule: d
dx f (x)/g(x) = f ′(x)g(x)−f (x)g ′(x)

g(x)2 .

I Fundamental theorem of calculus: f (a)− f (b) =
∫ b

a f ′(x) dx



Increasing functions

Derivative lets us see if a function is increasing or decreasing
I f (x) inc at x ⇒ f ′(x) ≥ 0.
I f (x) dec at x ⇒ f ′(x) ≤ 0.
I f ′(x) > 0 ⇒ f (x) is strictly inc at x
I f ′(x) < 0 ⇒ f (x) is strictly dec at x .

At a maximum a function can’t be strictly decreasing or increasing so if a
function is differentiable.
I Maxima can only occur at interior points were f ′(x) = 0 or points

that are not interior.



Local Maxima

The derivative is a local tool. Tells us how the function approximately
behaves at close by points.

Definition
x ∈ X is a local maximum of f : X → R if there exists an ε > 0 s.t. for
all x ′ ∈ X such that ||x − x ′|| < ε, f (x) ≥ f (x ′).
x ∈ X is a global maximum if for all x ′ ∈ X , f (x) ≥ f (x ′).



Example

max
x∈[0,1]

−(x − a)2

for a ∈ (0, 1). This is clearly maximized at x = a. The first order
condition is

−2(x − a) = 0

so x = a is indeed a critical point.



Example

Consider
max

x∈[0,1]
(x − a)2

This has first order condition

2(x − a) = 0

so x = a is the only point where f ′(x) = 0. But, we also need to worry
about the boundary. Three points to check

x = a, x = 0 x = 1.

x = a is local min, x = 0 and 1 are local maxima.



The derivative lets us approximate our function with other functions we
know a lot about

Theorem (Mean value theorem)
Suppose f is differentiable. Take a, b ∈ R. There exists a c s.t.
c ∈ (a, b) and

f ′(c) = f (b)− f (a)
b − a

Theorem (Taylor’s theorem)
Assume f is k times differentiable at x. Then there exists some function
r s.t.

f (a) =
k∑

i=0
f (k)(x)(a − x)k/k! + r(a)(a − x)k

where lima→x r(a) = 0.

We can use the derivative to locally approximate our function with a
polynomial.



Maximizers

What else can we say about a maximizer? Well let’s plug a maximizer x∗
into the second order taylor expansion.

Around a critical point,

f (x)− f (x∗) = f ′′(x∗)(x − x∗)2/2 + r(x)(x − x∗)2

If f ′′(x∗) > 0, then we could find a x ′ close enough to x s.t.
f (x ′)− f (x∗) > 0, which is a contradiction.

So at a maximizer f ′′(x∗) ≤ 0. Is this enough?



Multivariate Calculus

Now let’s think about f : Rm → R. The idea of a slope isn’t as clean
here.

Other interpretation still makes sense, the derivative is a linear function
that f behaves like locally, i.e. ∃∇f ∈ Rm s.t

lim
y→x
||f (y)− f (x)−∇f · (y − x)||

||y − x || → 0.

∇f is called the gradient.
I If f : Rm → Rn, we replace the vector with a matrix, usually denoted

Df (called the Jacobian), otherwise this definition is the same.
I Does this ∇f exist? Obviously not always.
I Is this unique?
I How do we find it?



Gradient

We can answer uniqueness and how to solve for this at the same time.

Let ei be the vector with a 1 in the ith-component and 0’s in all other
components. If the gradient exists then

∇f (x)i = lim
h→0

f (x + ei · h)− f (x)
h

We call the right hand side the partial derivative wrt to xi , denoted ∂f
∂xi

.
I So ∇f is the vector of partial derivatives.
I Even if all partial derivatives exist at x , f (·) may not be

differentiable, or even continuous at x .
I Fortunately, as long as all partial derivatives exist in some nbhd of x ,

x is differentiable.



Partial Derivatives

Partial derivatives are easy to find. Just treat all other variables as-if they
were constants and take the derivative.

Examples:
I ∂

∂x xy = y
I ∂

∂y (x2 + y2)1/2 = y(x2 + y2)−1/2.



Higher order derivatives

Just like in R we can take higher order derivatives.

The Hessian matrix is

D2f =



∂2f
∂x2

1

∂2f
∂x1x2

. . . ∂2f
∂x1xn

∂2f
∂x2x1

∂2f
∂x2

2
. . . ∂2f

∂x2xn
...

∂2f
∂xnx1

∂2f
∂xnx2

. . . ∂2f
∂x2

n


This is a symmetric matrix if the second derivatives are continuous
(Young’s theorem), i.e. ∂f

∂xi xj
= ∂f

∂xj xi
.



Taylor Expansion

We can do a Taylor expansion just like before. The second order Taylor
expansion now looks like

f (x) ≈ f (a) + (x − a)∇f (a) + 1
2!(x − a)′D2f (a)(x − a).



First-order conditions

The gradiant tells us how f (x) behaves locally in any direction.

So at any maximizer, ∇f (x) = 0.



Second order conditions

Once again, this is not enough. Taylor expansion gives us second order
condition: At any interior local max a, for x 6= a we need

(x − a)′D2f (a)(x − a) ≤ 0

and ∇f (x) = 0. If ∇f (x) = 0 and

(x − a)′D2f (a)(x − a) < 0

then a is a local max.



Definiteness

All homogeneous, degree 2 polynomials from Rm → R can be written
using a symmetric matrix in Rm×m.

x ′Ax

This is called a quadratic form.

We say a A is positive (semi)definite if for all x

x ′Ax > (≥)0

for all x , i.e. the first term in the polynomial is always positive. We
define negative (semi)definiteness analogously.



Definiteness

So to verify second order conditions, we need to make sure the Hessian is
negative definite.

If x ∈ R2, this is equivalent to checking

det(D2f ) > 0

and
∂2f
∂x2

1
< 0.

(A straightforward change of basis shows us a symmetric matrix is negative definite iff
all eigenvalues are negative. Since the determinant is the product of the eigenvalues,
this then follows immediately)



Definiteness

We can do a similar check for larger matricies, the determinants of the
leading principal minors must alternate signs, and the first must be
negative.
I You probably won’t have to check this to often outside of the R2

case in the first year :)
I A matrix is positive definite iff all the leading principle minors have

positive determinants, and A is neg def iff −A is pos def. This is
maybe easier to remember.

I To check whether a matrix is semi-definite, it is not enough to
replace the strict inequalities with weak inequalities.



Implicit Function Theorem
We now have a tool that lets us treat our non-linear functions sort of like
linear ones. Can we do other things with this?

Let p ∈ Rn be a (column) vector of prices, and suppose demand

q = Ap + b

for some A ∈ Rn×n, b ∈ Rn. Similarly supply is

q = Cp + d

The point where demand and supply are equal is the solution to

Ap + b = Cp + d
p = (A− C)−1(d − b)

Not only can we solve for the equilibrium, we can also see what happens
to prices as we vary that parameters.
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Implicit function theorem

More generally, for x ∈ Rn, y ∈ Rm, suppose

Ax + By = 0

If we change x to x + dx , dx ∈ Rn, what can we say about how much y
must change to maintain this equality.

A(x + dx) + B(y + dy) = 0
−Bdy = Ax + By + Adx

dy = −B−1Adx

Works as long as B has full rank.
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Implicit Function Theorem

Turns out we can do this for non-linear functions too

Example: x2 + y2 = 1. Fix initial point (x0, y0)
I This is the unit circle.
I Can we define a function g(x) = y , x2 + g(x)2 = 1 and g(x0) = y0.

Is this function unique? differentiable?
I Sort of: One of y = ±

√
1− x2 works.

I Not unique at (x0, y0) = (1, 0). Also not differentiable there.
Clearly this also becomes pretty tough to do for more complicated
functions.



Implicit function theorem

Theorem (Implicit Function Theorem)
Consider a function f : Rn+m → Rm. Denote elements of Rn+m as (x , y)
where x ∈ Rn, y ∈ Rm and fix a point (a, b) where f (a, b) = 0. If
Dy f (a, b) has full rank, then there exists a open set U ⊆ Rn and a
unique continuously differentiable g : U → Rm such that

f (x , g(x)) = 0

for all x ∈ U and g(a) = b. Finally

Dg(x) = −Dy f (x , g(x))−1Dx f (x , g(x))′



Implicit Function Theorem

To see where the differential equation comes from, consider f : R2 → R1.
Then if g(·) exists

f (x , g(x)) = 0
∂

∂x [f (x , g(x))] = 0

fx (x , g(x)) + fy (x , g(x))g ′(x) = 0

g ′(x) = − fx (x , g(x))
fy (x , g(x))

Full rank condition makes sure we aren’t dividing by 0

Proving this isn’t too terribly difficult, but it requires enough of a detour
into the theory of ODEs that we aren’t going to do.



Implicit function theorem: Examples

Applying the implicit function theorem to the example, we get:

Dy f (x , y) = 2y
Dx f (x , y) = 2x

So g ′(x) = −x/g(x)

For an initial condition (x0, y0), y0 6= 0 the unique solution to this
differential equation is exactly the equation we found 2 slides ago.

Just eyeballing this we see that at x0, y0 we see

dy
dx = −x0

y0

Gives us the“slope” of the circle
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Implicit Function Theorem: Example

We can also apply this to more abstract things.

Suppose f (x) is differentiable. What can we say about f (x) = y .
I Fix some x0, y0 = f (x0)
I IFT tells us when we can construct a unique (local) inverse function,

f (g(y)) = y if f ′(x0) 6= 0

I Also tells us the derivative is

g ′(y) = 1
f ′(g(y))

This is the inverse function theorem. If f (·) is an invertible function
with non-zero derivative then,

f −1′(y) = 1
f ′(f −1(y))
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Lagrange Multipliers

Now let f : Rn → R, g : Rn → Rm

max f (x)
s.t. g(x) = 0

Under some simple conditions, if x∗ solves this, then there exists a
(column vector) λ ∈ Rm s.t.

Df = λ′Dg

If g(·) was linear, we could just plug the constraints into the objective
function and solve that way.



Example

Consumer problem:

max xy
s.t. p1x + p2y = m

We can rewrite as unconstrained problem

max x(m − p1x)/p2

Which has FOC:

m − 2p1x = 0

x = m
2p1

y = m
2p2



Example

What if the constraints are non-linear

max xy
s.t. x2 + y2 = 1

I Can’t just invert the constraint and plug it back in

I We know a maximizer must also be a maximizer of either

max
x∈[−1,1]

x
√

1− x2

or

max
x∈[−1,1]

−x
√

1− x2
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FOCs:
0 = ± 1− 2x2

√
1− x2

So have to check

(±1/
√

2,±1/
√

2), (±1/
√

2,∓1/
√

2), (±1, 0).

How much further can we go with plugging the constraint into the
objective?



Lagrange Multipliers
Much harder to do with a bunch of general non-linear constraints. But
the implicit function theorem gives us a way to do this!
To keep notation simple: f : R2 → R, g : R2 → R

max f (x)
s.t. g(x) = 0

Let x∗ be a solution to the problem. Then g(x∗) = 0.
I Decompose x = (y , z).

I By IFT, exists an h(y) and a open set U ⊆ R s.t. g(y , h(y)) = 0 for
all y ∈ U and h(y∗) = z∗.

I So x∗ solves
max
x∈U

f (y , h(z))

which has first order condition

fy (y∗, h(y∗)) + fz(y∗, h(y∗))h′(y∗) = 0
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Lagrange Multiplier

fy (y∗, h(y∗)) + fz(y∗, h(y∗))h′(y∗) = 0

Applying IFT

fy (y∗, h(y∗)) + fz(y∗, h(y∗))h′(y∗) = 0

fy (y∗, z∗)− fz(y∗, z∗)gy (y∗, z∗)
gz(y∗, z∗) = 0

So if λ exists, it must be λ = fz(y∗, z∗)/gz(y∗, z∗). Need to make sure

fz(y∗, z∗) = λgz(y∗, z∗)

fz(y∗, z∗) = gz(y∗, z∗)fz(y∗, z∗)
gz(y∗, z∗)



Lagrange Multiplier
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Lagrange Multipliers

What did we need here?
I Note: We need gz(y∗, z∗) 6= 0 to apply IFT. So at any max were
∇g = 0, we have a problem

I This argument generalizes directly for arbitrary n,m, just need to
keep track of a lot of annoying matricies



Lagrange Multipliers

In general:

Theorem (Lagrange Multipliers)
Let f : Rn → R and g : Rn → Rm. Let x∗ be a solution to the following
optimization problem such that rank Dg(x∗) = m < n:

max f (x)
s.t. g(x) = 0

Then there exists a unique Lagrange multiplier λ ∈ Rm such that
Df (x∗) = λ′Dg(x∗)



Now we have a way to solve these problems:
I We now narrow down our set of possible maximizers to any (λ, x)

that solves either

Df (x) = λ′Dg(x)
g(x) = 0

or be a point where rank Dg(x) 6= m.
I Note that these are the first order conditions WRT to x and λ of

f (x)− λg(x),

this is called the lagrangian function.
I We could find second order conditions, etc. They exist (involve

checking the definiteness of the bordered hessian) but are really
annoying to check. We mostly will make assumptions to simplify
this part.



Example

max xy
s.t. x2 + y2 = 1

FOCs:

y = λ2x
x = λ2y

So

y2 = x2

Plugging this back into the constraint we get x = ±1/
√

2 and y = ±x as
our critical points. Plugging these into the objective gives us the
maximizer.
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Example - Cost minimization
A firm wants to reach production level q̄, chooses amount of capital (k)
and labor (l) to minimize the cost of reaching target given respective
prices (r ,w).

min
(k,l)∈R2

+

rk + wl

s.t. f (k, l) = q̄

We get first order conditions

r = λfk(k, l)
w = λfl (k, l)

So cost minimizing production plan sets MRS=MRT

r
w = fk(k, l)

fl (k, l)
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What’s next

We still have a few big problems:
1. When is the max unique? When is a local max a global max?
2. What if the constraints can’t be expressed in the form g(x) = 0.


