
Math Camp - Concavity



Concavity

We’ve already seen examples of functions where the max isn’t unique or
a local max isn’t a global max.

We also have seen problems where the critical points identify things
other than a max or min
I If f : R→ R, if f ′′(x) ≤ 0 everywhere, then clearly everything (but

uniqueness) isn’t a problem.
I The same is true if D2f is negative semidefinite everywhere
I Turns out, this describes an important class of functions.



Convex Sets

We’ve been talking a lot about drawing lines, what sort of sets make this
possible?

Definition (Convex Set)
We say a set X ⊆ Rm is convex if for any x , y ∈ X , λx + (1− λ)y ∈ X
for all λ ∈ (0, 1).

We can build a convex set from any set X .
I The convex hull of X : The smallest convex set containing X .
I Equvalently the set of all convex combinations of points in X .



Concavity

Definition (Concave/convex function)
Let X ⊆ Rm convex and f : X → R.
I f is concave if f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) for any
λ ∈ (0, 1). If the inequality is strict for all x 6= y , then the function
is strictly concave.

I f is convex if f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for any
λ ∈ (0, 1). If the inequality is strict for all x 6= y , then the function
is strictly convex.

Convex and concave functions “draw” the boundaries of convex sets. f is
convex iff {(x , y) : y ≥ f (x)} (the epigraph) is convex.



Examples

I Linear functions are both convex and concave.
I f (x) = x2 is strictly convex.
I f (x) =

√
x is strictly concave.

I f (x) = x3 is neither.
I f (x , y) = α log x + β log y is strictly concave for any α, β > 0.
I f (x , y) = min{x , y} is concave



Some properties

I f (x) is convex iff −f (x) is concave.
I αf (x) + βg(x) is concave if f (x) and g(x) are concave and
α, β ≥ 0.

I If f : X → Rm is concave and X is open, then f (·) is continuous.
I A concave function is differentiable almost everywhere.
I If f , g are concave and f is non-decreasing, then so is f ◦ g .
I The pointwise minimum of two concave functions is concave.
I f : R→ R concave, x3 > x2 > x1

f (x2)− f (x1)
x2 − x1

≥ f (x3)− f (x2)
x3 − x2



Who cares?
Theorem
Let X be a convex set and f : X → R be concave. Then any local
maximum is a global maximum. Moreover, if f is strictly concave then it
has at most one maximum.

Proof:
I Suppose x is a local, but not global maximizer. Then exists a y s.t.

f (y) > f (x).
I Then for all λ ∈ (0, 1)

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)
> min{f (x), f (y)}
≥ f (x)

which is a contradiction. If a strictly concave function has two
global maxes, x ,y then

f (λx + (1− λ)y) > λf (x) + (1− λ)f (y)

which is a contradiction.
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Quasiconcavity

The key property we used was really

f (λx + (1− λ)y) > min{f (x), f (y)}

We say a function is strictly quasiconcave if it satisfies this property.
Equivalently a function is quasiconcave iff

Uy = {x ∈ X : f (x) ≥ y}

are convex for all y . These are called the upper contour sets.
I Any concave function is quasiconcave.
I Quasiconcave functions need not be concave or convex or even

continuous.



Quasiconcavity

We can prove the following

Theorem
f : X → R, X convex and assume f (·) attains it’s maximizer.
I If f is quasiconcave then the set of maximizers is convex.
I If f is strictly quasiconcave then the maximizer is unique.



Derivatives

Concavity is a sort of finicky global property of the a function.
Fortunately, we can usually check something simpler

Theorem
Let f : Rm → R be a twice continuously differentiable function. Then the
following are equivalent
I f is concave
I D2f is negative semi-definite for all x .
I f (y)− f (x) ≤ ∇f (x) · (y − x)

Similarly, a function is quasiconcave iff
f (y) ≥ f (x)⇒ ∇f (x)(y − x) ≥ 0.



Optimization

So if we show:
I The objective function is concave
I The set we are maximizing over is convex.

Then any solution to the FOCs is a global maximum. If we can also show
the objective is strictly quasiconcave, then the maximum is unique!



Separating Hyperplane

When can we draw a line between two sets?
I Take any p ∈ Rm and some a ∈ R. The set

h(p, c) = {y : p · y = c}

is a hyperplane. In R2 this is a line, in R3 a plane, etc.
I Our goal is a result like the following: A,B ⊆ Rm. There exists a

hyperplane h(p, c) s.t. for all a ∈ A, b ∈ B

p · a ≤ c ≤ p · b.

so our line separates the two sets.



Separating Hyperplanes

There are a number of these theorems, including very important results
in functional analysis and in linear programming. Here are two

Theorem (Separating Hyperplane theorem)
Let A 6= ∅ be a closed, convex set in Rm and B 6= ∅ is a compact, convex
set in Rm. If E ∩ D = ∅ then there exists a p and an d s.t. for all a ∈ A,
b ∈ B, p · a < d < p · b

Theorem (Supporting Hyperplane theorem)
Let A 6= ∅ be a convex set in Rm and x ∈ Rm \ int(D). Then exists a p
and c s.t. for all a ∈ A, p · a ≤ c ≤ p · x.

A good exercise is to think about what could go wrong if you relaxed any
assumption.


