Math Camp - Concavity

## Concavity

We've already seen examples of functions where the max isn't unique or a local max isn't a global max.

We also have seen problems where the critical points identify things other than a max or min

- If $f: \mathbb{R} \rightarrow \mathbb{R}$, if $f^{\prime \prime}(x) \leq 0$ everywhere, then clearly everything (but uniqueness) isn't a problem.
- The same is true if $D^{2} f$ is negative semidefinite everywhere
- Turns out, this describes an important class of functions.


## Convex Sets

We've been talking a lot about drawing lines, what sort of sets make this possible?

## Definition (Convex Set)

We say a set $X \subseteq \mathbb{R}^{m}$ is convex if for any $x, y \in X, \lambda x+(1-\lambda) y \in X$ for all $\lambda \in(0,1)$.

We can build a convex set from any set $X$.

- The convex hull of $X$ : The smallest convex set containing $X$.
- Equvalently the set of all convex combinations of points in $X$.


## Concavity

Definition (Concave/convex function)
Let $X \subseteq \mathbb{R}^{m}$ convex and $f: X \rightarrow \mathbb{R}$.

- $f$ is concave if $f(\lambda x+(1-\lambda) y) \geq \lambda f(x)+(1-\lambda) f(y)$ for any $\lambda \in(0,1)$. If the inequality is strict for all $x \neq y$, then the function is strictly concave.
- $f$ is convex if $f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)$ for any $\lambda \in(0,1)$. If the inequality is strict for all $x \neq y$, then the function is strictly convex.

Convex and concave functions "draw" the boundaries of convex sets. $f$ is convex iff $\{(x, y): y \geq f(x)\}$ (the epigraph) is convex.

## Examples

- Linear functions are both convex and concave.
- $f(x)=x^{2}$ is strictly convex.
- $f(x)=\sqrt{x}$ is strictly concave.
- $f(x)=x^{3}$ is neither.
- $f(x, y)=\alpha \log x+\beta \log y$ is strictly concave for any $\alpha, \beta>0$.
- $f(x, y)=\min \{x, y\}$ is concave


## Some properties

- $f(x)$ is convex iff $-f(x)$ is concave.
- $\alpha f(x)+\beta g(x)$ is concave if $f(x)$ and $g(x)$ are concave and $\alpha, \beta \geq 0$.
- If $f: X \rightarrow \mathbb{R}^{m}$ is concave and $X$ is open, then $f(\cdot)$ is continuous.
- A concave function is differentiable almost everywhere.
- If $f, g$ are concave and $f$ is non-decreasing, then so is $f \circ g$.
- The pointwise minimum of two concave functions is concave.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ concave, $x_{3}>x_{2}>x_{1}$

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \geq \frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}
$$

## Who cares?

Theorem
Let $X$ be a convex set and $f: X \rightarrow \mathbb{R}$ be concave. Then any local maximum is a global maximum. Moreover, if $f$ is strictly concave then it has at most one maximum.

## Who cares?

Theorem
Let $X$ be a convex set and $f: X \rightarrow \mathbb{R}$ be concave. Then any local maximum is a global maximum. Moreover, if $f$ is strictly concave then it has at most one maximum.

## Proof:

- Suppose $x$ is a local, but not global maximizer. Then exists a $y$ s.t. $f(y)>f(x)$.
- Then for all $\lambda \in(0,1)$

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \geq \lambda f(x)+(1-\lambda) f(y) \\
& >\min \{f(x), f(y)\} \\
& \geq f(x)
\end{aligned}
$$

which is a contradiction. If a strictly concave function has two global maxes, $x, y$ then

$$
f(\lambda x+(1-\lambda) y)>\lambda f(x)+(1-\lambda) f(y)
$$

which is a contradiction.

## Quasiconcavity

The key property we used was really

$$
f(\lambda x+(1-\lambda) y)>\min \{f(x), f(y)\}
$$

We say a function is strictly quasiconcave if it satisfies this property. Equivalently a function is quasiconcave iff

$$
U_{y}=\{x \in X: f(x) \geq y\}
$$

are convex for all $y$. These are called the upper contour sets.

- Any concave function is quasiconcave.
- Quasiconcave functions need not be concave or convex or even continuous.


## Quasiconcavity

We can prove the following
Theorem
$f: X \rightarrow \mathbb{R}, X$ convex and assume $f(\cdot)$ attains it's maximizer.

- If $f$ is quasiconcave then the set of maximizers is convex.
- If $f$ is strictly quasiconcave then the maximizer is unique.


## Derivatives

Concavity is a sort of finicky global property of the a function. Fortunately, we can usually check something simpler

## Theorem

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a twice continuously differentiable function. Then the following are equivalent

- $f$ is concave
- $D^{2} f$ is negative semi-definite for all $x$.
- $f(y)-f(x) \leq \nabla f(x) \cdot(y-x)$

Similarly, a function is quasiconcave iff $f(y) \geq f(x) \Rightarrow \nabla f(x)(y-x) \geq 0$.

## Optimization

So if we show:

- The objective function is concave
- The set we are maximizing over is convex.

Then any solution to the FOCs is a global maximum. If we can also show the objective is strictly quasiconcave, then the maximum is unique!

## Separating Hyperplane

When can we draw a line between two sets?

- Take any $p \in \mathbb{R}^{m}$ and some $a \in \mathbb{R}$. The set

$$
h(p, c)=\{y: p \cdot y=c\}
$$

is a hyperplane. In $\mathbb{R}^{2}$ this is a line, in $\mathbb{R}^{3}$ a plane, etc.

- Our goal is a result like the following: $A, B \subseteq \mathbb{R}^{m}$. There exists a hyperplane $h(p, c)$ s.t. for all $a \in A, b \in B$

$$
p \cdot a \leq c \leq p \cdot b
$$

so our line separates the two sets.

## Separating Hyperplanes

There are a number of these theorems, including very important results in functional analysis and in linear programming. Here are two

Theorem (Separating Hyperplane theorem)
Let $A \neq \emptyset$ be a closed, convex set in $\mathbb{R}^{m}$ and $B \neq \emptyset$ is a compact, convex set in $\mathbb{R}^{m}$. If $E \cap D=\emptyset$ then there exists a $p$ and an d s.t. for all $a \in A$, $b \in B, p \cdot a<d<p \cdot b$

Theorem (Supporting Hyperplane theorem)
Let $A \neq \emptyset$ be a convex set in $\mathbb{R}^{m}$ and $x \in \mathbb{R}^{m} \backslash \operatorname{int}(D)$. Then exists a $p$ and $c$ s.t. for all $a \in A, p \cdot a \leq c \leq p \cdot x$.

A good exercise is to think about what could go wrong if you relaxed any assumption.

