
Math Camp - Optimization



KKT conditions

Many of the problems we want to solve in economics can’t be described
with just equality constraints
I Consumer problem

max
x∈Rm

+
u(x)

s.t. p · x ≤ m

I Cost minimization

min
(k,l)∈R2

+

rk + wl

s.t. f (k, l) ≥ q̄



KKT conditions

f : Rn → R, g : Rn → Rm.

max f (x)
s.t. g(x) ≤ 0

How can we solve this?
I Similar intuition as in older problems, want to make sure function

doesn’t increase in any direction we can move in.
I Now we can move in a lot more directions.
I Mechanically, a natural way to try to solve this:

1. Assume some constraints held with equality.
2. Ignore all other constraints.
3. Solve the relaxed problem. If the solution is feasible, keep it.
4. Do this for all combinations of constraints and then compare the

feasible solutions.



KKT conditions

Definition (Karush-Kuhn-Tucker conditions)
We say a point x ∈ Rn and a multiplier λ ∈ Rm satisfy the
Karush-Kuhn-Tucker conditions (KKT) for a maximum if

Df (x) = λ′Dg(x)
gi (x) ≤ 0 for all i ∈ {1, . . .m}

λi gi (x) = 0 for all i ∈ {1, . . .m}
λi ≥ 0 for all i ∈ {1, . . .m}



KKT conditions
There are four conditions here

Df (x) = λ′Dg(x)
gi (x) ≤ 0 for all i ∈ {1, . . .m}

What we expect, the lagrange multiplier conditions + the constraints.

λi gi (x) = 0 for all i ∈ {1, . . .m}

This is called called complementary slackness, says either a constraint
holds with equality or we can ignore it.

λi ≥ 0 for all i ∈ {1, . . .m}

The fourth condition is the extra bit of structure we get from being able
to move in more directions.
I This requires something beyond our Lagrange multiplier argument.

Can use the separating hyperplane theorem to show it.



KKT conditions

Like before, we could set up the lagrangian L(x , λ) = f (x)− λg(x).
I Complementary slackness implies f (x∗) = L(x∗, λ∗).
I There are second order conditions for this, they are annoying.
I We would like a thm that says: A point is a local max iff it satisfies

the KKT conditions.
I Neither direction is true in general unfortunately



KKT conditions-Example

max xy
s.t. x2 + y2 ≤ 1

Our FOCs are

y = λ2x
x = λ2y

I We know from earlier, x = ± 1√
2 , y = ±x solves these conditions for

some λ and are feasible. Verify that the one’s we identified as
maximum’s before have positive multipliers.

I Complementary slackness: Either x2 + y2 = 1 or λ = 0. If λ = 0,
x , y = 0

I x = y = 0 is not a local max, even though it satisfies the KKT
conditions.



KKT conditions-Example

max xyz + z
s.t.x2 + y2 + z ≤ 6

x ≥ 0
y ≥ 0
z ≥ 0



Example
The first order conditions are

yz = λ12x − λ2

xz = λ12y − λ3

xy + 1 = λ1 − λ4

Complementary slackness

λ1(x2 + y2 + z − 6) = 0
λ2x = 0, λ3y = 0λ4z = 0

And

x2 + y2 + z ≤ 6
x , y , z , λ ≥ 0



Example

First observe λ1 > 0. If λ1 = 0, then

xy + 1 = −λ4

but the LHS is positive and the RHS is negative.

Are there critical points where the non-negativity constraints bind?



Example

Recall the FOCs

yz = λ12x − λ2

xz = λ12y − λ3

xy + 1 = λ1 − λ4

If x = 0, then by the second FOC

y > 0⇒ λ3 > 0

so y = 0. Thus z = 6, λ = (1, 0, 0, 0).



Example

Finally, assume all three non-negativity constraints are slack,
λ2 = λ3 = λ4 = 0.
I yz = 2λ1x and xz = 2λ1y so x = y .
I We then know

z = 6− 2x2

z = 6− 2(λ1 − 1)

And from the FOC wrt to x

8− 2λ1 = 2λ1

So x = 1, y = 1, z = 4, λ = (2, 0, 0, 0) is a critical point.



Example

max
x ,y∈R+

x

s.t. y − (1− x)3 ≤ 0

If you just graph this, the max is clearly (1, 0). But the FOC wrt to x is

1 = −3λ(1− x)2.

which cannot be satisfied at (1, 0). Relates to the full-rank thing we had
with Lagrange multipliers, note the derivative matrix of the binding
constraints at (1, 0) is (

0 1
0 1

)



Necessity

The natural condition here, that the derivatives of binding constraints are
linearly independent seems really annoying to check.

Theorem (KKT - Necessary)
The KKT conditions hold at a maximizer x∗ if rank Dg∗(x∗) = m∗,
where m∗ is the number of constraints that hold with equality and g∗ is
the vector of g’s where g(x∗) = 0.

Roughly, more generally, we say a maximizer satisfies constraint
qualification if the KKT conditions hold at a maximizer. Some other
conditions that work
I (Slater condition) f concave, each gi is convex and there exists x

s.t. gi (x) < 0 for all i ∈ {1, . . .m}.
I g(x) = Ax + b for some matrix A ∈ Rm×n, b ∈ Rm

Note: unlike the rank condition, these do not require us to “know” the
maximum.



KKT-Sufficiency
Theorem (KKT sufficiency)
Suppose ∇f (x) 6= 0 for all feasible x, f quasiconcave, gi quasiconvex for
all i ∈ {1, 2, . . .m}. Then any point satisfying the KKT conditions is a
global max.

Proof:
I Fix a (x∗, λ∗) that satisfies the KKT conditions. For any y

∇f (x∗) · (y − x∗)−
m∑

i=1
λ∗i∇gi (x∗) · (y − x∗) = 0

By quasiconvexity

λ∗i∇gi (x∗) · (y − x) ≤ 0

since for any feasible y , if gi binds at x∗, gi (y) ≤ gi (x∗) and g ’s are
quasiconvex.

I So ∇f (x∗)(y − x∗) ≤ 0, and thus f (x∗) ≥ f (y) by quasiconcavity.



Value functions

Think about the consumer problem:

max u(x)
s.t. p · x ≤ m

This has parameters (p,m). Two natural objects to think about
I v(p,m) - The value of u(x) at the max.
I x(p,m) - The choice that maximizes u(x).



More generally, X ⊂ Rn, Θ ⊂ Rc . Let f : X ×Θ→ R and
C : Θ→ 2X \ {∅}.

V (θ) = max
x∈X

f (x ; θ)

s.t. x ∈ C(θ)

and let χ(θ) be the corresponding arg max.
I V (θ) is the value function

I Note: As long as the max exists for all θ, it is indeed a function.
I χ(θ) is the policy correspondence.



Correspondences

A correspondence is set-valued function. Both our constraints and the
arg max are correspondences.

For instance, if (x , y) is how many apples and bananas I buy, then the
function that takes my income and the price of apples and bananas and
tells me what combinations I can afford to purchase is in general going to
spit out a set.

B(p,M) = {(x , y) : p1x + p2y ≤ m}

We could define continuity directly on functions f : R→ 2R by, for
instance, defining a distance between sets and then using our ε− δ
definition, but this seems hard (and maybe not what we want).



Correspondences

Instead, let’s think about it more heuristically. What might we want?



Correspondences

Definition (Upper Hemicontinuity)
A compact-valued correspondence Γ : A⇒ B where B is compact is
upper hemicontinuous iff it has a closed graph: ∀xn ∈ A, yn ∈ Γ(xn)

lim
n→∞

xn = x , lim
n→∞

yn = y ⇒ y ∈ Γ(x)

Definition (Lower Hemicontinuity)
Γ : A⇒ B is lower hemicontinuous iff for all x ∈ X , xn → x and for all
y ∈ Γ(x), there exists a subsequence xnk a sequence ynk ∈ Γ(xnk ) such
that ynk → y



UHC and LHC

I Upper-hemicontinuity preserves the property of continuous functions
where sequences in the domain and the corresponding sequence in
the range converge, then the limit in the range is the function
evaluated at the limit in the domain.

I Lower hemicontinuity preserves the property that any point in the
range can be approximated by the value of the function at nearby
points.



UHC and LHC

I A correspondence can be either, neither or both.
I If the correspondence is single valued, then both are equivalent and

are equivalent to continuity.
I Very sloppily speaking, for non-empty convex + compact valued

correspondences in R:
I If UHC you can draw a the upper + lower boundaries without lifting

your pen.
I If LHC then you can take a slice out of the correspondence that is a

continuous function.
I We say a correspondence is continuous if it is UHC and LHC.



Maximum theorem

A natural question to ask about the value function and policy
correspondence is what sort of continuity properties do they inherit.

Theorem (Berge’s Maximum Theorem)
Let Θ ⊆ Rm, X ⊆ Rn be nonempty and compact, f : X ×Θ→ R be
continuous, and C : Θ⇒ X be a compact valued, continuous
correspondence. Then
I The value function V (θ) is continuous.
I The policy correspondence χ(θ) is non-empty, compact-valued and

UHC.



Maximum Theorem

Proof:
I V and χ exist and χ is non-empty is immediate from Weierstrauss

theorem.

I χ(θ) is closed (and thus compact).
I Take any convergent sequence xn ∈ χ(θ), xn → x .
I Since C(θ) is compact, x ∈ C(θ).
I f (xn, θ) = V (θ) so f (x , θ) = V (θ).

I χ(θ) is uhc.
I Take a sequence θn → θ, xn → x , xn ∈ χ(θn).
I By UHC, x ∈ C(θ).
I Take any z ∈ C(θ), there exists zn ∈ C(θn), zn → z by LHC.
I By continuity, f (xn; θn) ≥ f (zn; θn)⇒ f (x ; θ) ≥ f (z ; θ).
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Maximum theorem

I V (θ) is continuous.

I Take a sequence θn → θ and a xn ∈ χ(θn), x ∈ χ(θ).
I Suppose V (θn) does not converge to V (θ). Then there is a

subsequence θnk , xnk s.t. |V (θnk )− f (x ; θ)| ≥ ε for some ε > 0.
I But xnk has a further subsequence that converges to some x ∈ χ(θ)

by UHC.
I Therefore f (x ; θ) = limj→∞ f (xnk j ; θnk j ) = V (θ), which is a

contradiction.
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Concavity

We can use concavity to strengthen these theorems

Corollary
If, in addition to the conditions of the maximum theorem, C is
convex-valued and x 7→ f (x , θ) is strictly quasi-concave then χ is
single-valued, and is thus a continuous function.

Theorem (Fancy Concave Maximum Theorem)
Let Θ ⊆ Rm, X ⊆ Rn be nonempty and compact. f : X ×Θ→ R be
continuous, quasiconcave, and C : Θ⇒ X is a compact valued,
continuous correspondence with convex graph. Then
I The value function V (θ) is continuous and quasiconcave.
I The policy correspondence χ(θ) is non-empty, compact-valued,

convex valued and UHC.



Concavity

The only thing we haven’t already shown here is that V is quasiconcave.
I Fix θ1, θ2, x1 ∈ χ(θ1), x2 ∈ χ(θ2).
I For any λ ∈ (0, 1), λx1 + (1− λ)x2 ∈ C(λθ1 + (1− λ)θ2). Thus

V (θλ) ≥ f (xλ; θλ) ≥ min(f (x1, θ2), f (x2, θ2)) = min(V (θ1),V (θ2))

The same logic shows that V inherits concavity, strict concavity and
strict quasiconcavity from f under the conditions of the theroem.



Envelope Theorem

Consider an optimization problem, parameterized by some θ ∈ Θ ⊆ R, Θ
open.

max
x∈R

f (x ; θ)

Suppose this has a unique solution for each θ, given by single valued and
differentiable function χ(θ). Then

V (θ) = f (χ(θ); θ)
dV (θ)

dθ = fx (χ(θ); θ)χ′(θ) + fθ(χ(θ); θ)

= fθ(χ(θ); θ)



Envelope theorem
We can do the same things for constrained optimization

max f (x ; θ)
s.t. g(x ; θ) = 0

Suppose we know that χ is single valued and differentiable. Then

V (θ) = f (χ(θ); θ)
DV (θ) = Dx f (χ(θ); θ)Dχ(θ) + Dθf (χ(θ); θ)

We also know
Dx f (χ(θ); θ) = λ′Dx g(χ(θ); θ)

Finally, since g(χ(θ); θ) = 0,

Dx g(χ(θ); θ)Dχ(θ) = −Dθg(χ(θ); θ)

So
DV (θ) = −λ′Dθg(χ(θ); θ) + Dθf (χ(θ); θ)

This is called the envelope theorem.



Envelope Theorem

Theorem (Envelope theorem)
Suppose f , g , χ(θ) are continuously differentiable and Dg(χ(θ), θ) has
full rank. Then V is differentiable and

DV (θ) = −λ′Dθg(χ(θ); θ) + Dθf (χ(θ); θ)

This theorem having conditions on χ is a bit annoying.
I We want some sort of concavity to get χ to be a function.
I We could assume more differentiability and apply the implicit

function theorem to the first order conditions to get differentiability.
I Alternatively, establishing concavity/convexity of the policy function

or monotonicity almost be enough.



Envelope Theorem

This turns out to be surprisingly useful.
I It gives us a convenient tool for comparative statics.
I Gives multipliers economic meaning.



Consumer problem

Consider the consumer problem:

max u(x)
s.t. p · x = m

Suppose this gives us single valued, differentiable demands x(p,m) and
value function v(p,m). The envelope theorem tells us

∂v(p,m)
∂m = λ

the multiplier is the shadow price of income, what you lose from a
decrease in wealth. Similarly

∂v(p,m)
∂pi

= −λxi (p,m)



Cost minimization
Recall the firm’s cost minimization problem

min
k,l∈R+

rk + wl

s.t. f (k, l) ≥ q̄

Verify for yourself that if f (·) is strictly concave, the policy
correspondence (input demand) is single valued.

If input demand is differentiable then we know the derivative of the cost
function C(r ,w , q) is

∂C
∂r = k(r ,w , q)

∂C
∂w = l(r ,w , q)

So if we know (r ,w , q) and a firm’s costs, we can back out input
demand.



Fixed Points

We are often going to run into situations where it’s unclear whether a
solution to our model even exists.

For instance, are there prices where supply equals demand. Fixed point
theorems give us a powerful tool to deal with this.
I A function f : X → X has a fixed point if there exists some x ∈ X

s.t. f (x) = x .
I Think about any continuous function f : [0, 1]→ [0, 1]. Does it have

a fixed point.



Fixed Points

Graphically, continuous functions look like a smooth curve with no holes,
jumps, etc. So in R, relatively easy to find fixed points of continuous
functions.

Theorem (Intermediate Value Theorem)
Suppose f : [a, b]→ R is continuous. Then if y lies between f (a), f (b)
(e.g. f (a) ≤ y ≤ f (b)) then there exists a c ∈ [a, b] such that f (c) = y

Tells us when, for instance, we can find a point where curves intersect,
places where the function crosses 0, etc.



Fixed Points

Theorem (Brouwer’s Fixed Point Theorem)
Every continuous function from a convex, compact subset X of Rn to
itself has a fixed point.

Theorem (Kakutani’s Fixed Point Theorem)
Every non-empty, convex valued, UHC correspondence from a non-empty,
convex and compact subset X of Rn to itself has a fixed point.

Think about what happens if you relax any of the conditions.


