
Aalto University, School of Science
CS-E5740 Complex Networks, Fall 2021
Saramäki, Korhonen
Exercise set #5

Exercise set #5 (16 pts)

• The deadline for handing in your solutions is November 1st 2021 23:59.

• Return your solutions (one .pdf file and one .zip file containing Python code) in My-
Courses (Assignments tab). Additionally, submit your pdf file also to the Turnitin plagia-
rism checker in MyCourses.

• Check also the course practicalities page in MyCourses for more details on writing your
report.

1. PageRank for directed networks (16 pts)

PageRank, a generalization of eigenvector centrality for directed networks, is used by e.g. Google
to determine the centrality of web pages. If we consider a random walker that with probability d
moves to one of the successors of the current node (i.e. nodes linked to by the current node) and
with probability 1 − d teleports to a random node, PageRank of each node equals the fraction
of time the random walker spent in that node. In this exercise, we investigate the behavior
of PageRank in a simple directed model network (see fig. 1). To get started, you can use the
provided Jupyter notebook.

1

0

3

2

5

4

7

6

Network

Figure 1: A simple directed network.

a) (1 pt) Load the network given in file pagerank_network.edg and, as a sanity check,

Aalto University, School of Science
CS-E5740 Complex Networks, Fall 2021
Saramäki, Korhonen
Exercise set #5

visualize it with nx.draw.
Hint: To load the directed network, use parameter create_using=nx.DiGraph() when
reading the edge list. NetworkX visualization of directed graphs is somewhat ugly but
sufficient for the present purposes. In fact, the spring layout algorithm in NetworkX,
which is its default algorithm for computing node positions, works only well with undirected
graphs, so for computing the layout, it’s better to feed the algorithm the undirected version
of the network. In addition, the algorithm can give different results on different runs, so
it may be useful to plot the network a few times until the result looks good.

b) (4 pts) Write a function that computes the PageRank on a network by simulating
a random walker. In more detail,

1. Initialize the PageRank of all nodes to 0.

2. Pick the current node (the starting point of the random walker) at random.

3. Increase the PageRank of the current node with 1.

4. Select the node, to which the random walker will move next:

∗ Draw a random number p ∈ [0, 1].
∗ If p < d, the next node is one of the successors of the current one. Pick it

randomly.
∗ Else, the random walker will teleport. Pick the next node randomly from all the

network nodes.

5. Repeat steps 3-4 Nsteps times.

6. Normalize the PageRank values by Nsteps.

Use your function to compute PageRank in the example network. Visualize the
result on the network: update your visualization from a) by using the PageRank values
as node color values. Compare your results with nx.pagerank by plotting both results as
a function of node index.
Hints: The damping factor is normally set to d = 0.85. Nsteps = 10000 is a reasonable
choice.

c) (4 pts) The above algorithm is a naive way of computing PageRank. The actual algorithm
behind the success of Google, introduced by its founders, Larry Page and Sergey Brin,
is based on power iteration [1]. The power iteration can be shown to find the leading
eigenvector for the “Google matrix” (or other matrices) very fast under certain conditions.
An intuitive way of thinking about the power iteration algorithm is to think that at time
t − 1 you have a vector x(t − 1) where each element gives the probability of finding the
walker. You use the rules of the random walk/teleportation process to find out what are
the probabilities of finding the random walkers at each node at time t. That is you increase
the time t and calculate x(t) based on x(t−1) until the vector x doesn’t change any more.
Write a function that computes the PageRank by using power iteration. In more
detail,

1. Initialize the PageRank of all nodes to 1
n , where n is the number of nodes in the

network. That is, at the iteration t = 0 your PageRank vector contains the same
value for each node, and it is equally likely to find the walker in each node. (Any
other initialization strategy is possible as long as the sum of all elements is one, and
the closer the initial vector is to the final vector the faster you will find the final
PageRank values.)

Aalto University, School of Science
CS-E5740 Complex Networks, Fall 2021
Saramäki, Korhonen
Exercise set #5

2. Increase the iteration number t by one and create a new empty PageRank vector x(t).
3. Fill in each element of the new vector PageRank vector x(t) using the old PageRank

vector x(t − 1) and the formula: xi(t) = (1 − d) 1
n + d

∑
j∈νi

xj(t−1)
koutj

, where νi is the

set of nodes that have a directed link ending at i, and for each such node j ∈ νi, koutj

is j’s out-degree. In summary, for each node i you need to calculate their entry in
the new PageRank vector x(t) as a sum of two parts:
∗ probability that the walker will teleport into the node (1− d) 1

n and
∗ probability that the walker will move from a neighbor j to node i. Iterate over

each in-neighbor j of the node i (i.e., there is a link from j to i) and add the
neighbors contribution dxj(t−1)

koutj
to the entry of the node i in the new PageRank

vector x(t).
4. Repeat steps 2 and 3 Niterations times.

Use your function to compute PageRank in the example network and visualize the
result on the network as in b).
Hints:

– The damping factor is normally set to d = 0.85.
– You can monitor the progress of the power iteration by printing out the change in the

PageRank vector ∆(t) =
∑

i |xi(t)− xi(t− 1)| after each iteration step. The change
∆(t) should be decreasing function of t. Niterations = 10 should be more than enough
in most cases.

– You can list the incoming edges to node i with the function net.in_edges(i), where
net is the network object. Alternatively, you can use the function net.predecessors(i),
which returns an iterator over predecessor nodes of node i.

– The sum of all elements in the PageRank vector should always equal to one. There
might be slight deviations from this due to numerical errors, but much larger or
smaller values is an indication that something is wrong with the code.

d) (2 pts) The Google search engine indexes billions of websites and the algorithm for calcu-
lating the PageRank needs to be extremely fast. In the original paper about PageRank [1],
by Google founders Larry Page and Sergey Brin, they claim that their “iterative algorithm”
is able to calculate the PageRank for 26 million webpages in a few hours using a normal
desktop computer (in 1998). Come up with a rough estimate of how long it would
take for your power iteration algorithm (part c) and naive random walker algorithm (part
b) to do the same. You can assume that the average degree of the 26 million node network
is small and that the power iteration converges in the same number of steps as it does
for your smaller networks. For the random walk you can assume that you need to run
enough steps that the walker visits each node on average 1000 times. You can also omit
any considerations of fitting the large network in memory or the time it takes to read it
from the disk etc. With these assumption you can simply calculate the time it takes to
run the algorithm in a reasonable size network and multiply the result by the factor that
the 26 million node network is bigger than your reasonable sized network.
Report all calculations and parameters you use (such as size of the network, number of
steps); simply reporting the result without telling how you obtained it will not get you
any points.

Hints:

Aalto University, School of Science
CS-E5740 Complex Networks, Fall 2021
Saramäki, Korhonen
Exercise set #5

– There are several ways of timing your code. You can use for example IPython’s
%timeit command or the Python timeit module.

– The small example network is probably going to be too small to test out the speed
of your function especially if you measure the time it takes to run a Python script.
(In this case your function might take milliseconds to run but running the whole
script might still take a second or so because of starting Python and loading various
modules.) You should aim for a network for which it takes several seconds to run the
PageRank function. You might find it useful to use network model in networkx to
run your code. For example,
net=nx.directed_configuration_model(10**4*[5],10**4*[5],create_using=nx.DiGraph())

will produce network with 10000 nodes where each node has in and out degrees of 5
using the configuration model.

– Don’t feel bad if you cannot beat Larry and Sergey in speed when using Networkx
and Python. These tools are not meant for speed of computation and even modern
computers might not be enough to help. Also, your competition invented Google.

e) The aim of this task is to understand how the structure of a network relates to PageRank.
Remember to justify your answers.

1) What is the connection between a node’s in-degree kin and its PageRank (if any)? If
you know only the in-degrees of two nodes (in the same network), can you tell which
one has a higher PageRank?(1 p)

2) What is the connection between a node’s out-degree kout and its PageRank (if any)?
(0.5 p)

3) How does PageRank change if the node belongs to a strongly connected component?
(0.5 p)

4) How could the information about the network’s structure be used in improving the
power iteration algorithm given in part c)? (0.5 p)
Hint: Are there ways to incorporate this information to make the algorithm converge
faster?

5) Explain why the PageRanks of nodes 5 and 6 in the plotted network are higher than
that of node 7. (0.5 p)

f) (2 pts) Investigate the effect of the damping factor d on the PageRank values of the
network used in parts a)-c). Repeat the PageRank calculation with e.g. 5 different values
of d ∈ [0, 1] and plot the PageRank as a function of node index (plots of all values of d in
the same figure). Interpret the results. How and why does the change of d affect the
rank of the nodes and the absolute PageRank values? Explain what happens, when d=0
and when d=1.

In case you do not trust your implementations in b) and c), you can use PageRank values
obtained with ‘nx.pagerank‘ in this last task.

Feedback (1 pt)

To earn one bonus point, give feedback on this exercise set and the corresponding lecture latest
two days after the report’s submission deadline. You can find the feedback form at the Assign-
ments tab in MyCourses.

Aalto University, School of Science
CS-E5740 Complex Networks, Fall 2021
Saramäki, Korhonen
Exercise set #5

References

[1] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Com-
puter networks and ISDN systems, vol. 30, no. 1-7, pp. 107–117, 1998.

	PageRank for directed networks (16 pts)

