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Today

• Introduction to planning in sequential problems

• Overview of course contents
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Let’s talk about planning

• Name planning problems from your daily life

• Design a plan to solve your problem

• What is a plan?
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Planning and surprises

• Does your plan allow for surprises or unknowns?

• How would you modify the plans to allow surprises?

• Plan can be conditional on current observation

Policy from observation to action

π :O→ A
a=π(o)



 

Information needs

• Are there cases when current observation is not 
sufficient to make decisions? If yes, when does that 
happen?



 

Information needs

• Are there cases when current observation is not 
sufficient to make decisions? If yes, when does that 
happen?

• Sometimes history of observations is needed.
• Information used for decision can be abstracted as 

state. 

• Give examples of state for different problems.
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• Let’s consider that everything can be observed at time 
of each decision. 

• Plan is then a policy function from state to action.
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Plan as policy

• Let’s consider that everything can be observed at time 
of each decision. 

• Plan is then a policy function from state to action.

• Can all plans (purposeful decision strategies) be 
represented like this?
– Many can, but sometimes it’s useful to be random (e.g. games)

π : S→A
a=π(s)



 

Success

• How can you define success in planning?
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Success

• How can you define success in planning?

• Reaching a particular state
• Making particular state transitions

• Are all plans that reach a goal equally good?

• Give an example of a good and a bad plan



 

Objective(s)

• How can you formulate goal(s) in planning to take into 
account plan quality?
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Objective(s)

• How can you formulate goal(s) in planning to take into 
account plan quality?

• Immediate reward vs cumulative return

• Design rewards for your own problem.



 

Evaluating policy quality

• Assuming that
– we have a policy,
– know the associated reward function, 
– the system can be tested,

how can the quality of the policy be evaluated?



 

Planning as optimization

• Planning (sequential decision making) can be 
understood as optimization of a policy with respect to 
expected return.



 

Planning as optimization

• Planning (sequential decision making) can be 
understood as optimization of a policy with respect to 
expected return.

• To automatically solve such problems, which information 
is needed? Where can the information come from?



 

Information for planning

• Effects of actions in different states
– Which state I may end up to if I do X now?

• Rewards of state-action pairs
– What’s the reward if I now do X?



 

Reinforcement learning problem

• Determine policy 

such that expected cumulative return is maximized

a=π(s)

π∗=argmaxπE [G ]

G=∑t
rt



 

Why is RL hard?

• Effects of actions (state dynamics) 
– need to be learned
– are often stochastic

• Rewards 
– (may) need to be learned
– may be delayed (“sparse rewards”)
– may be difficult to choose/formulate

• Trade-off between learning (exploration) and maximizing 
rewards (exploitation)



 

Summary so far

• Can you
– explain what is reinforcement learning
– define a problem as a reinforcement learning problem
– explain why reinforcement learning is difficult



 

Setting

action a

environment state

observation z

agent state 

reward  r

Task
Choose a sequence of
actions that maximizes
cumulative reward.

s A

sE



 

Markov decision process

action a

environment state

observation z

agent state 

reward  r

MDP
Environment observable

Defined by dynamics

And reward function

Solution e.g.

Represented as policy

s A

sE

o=sE=sA

P(s t+ 1∣s t , at)

rt=r (st+1 , st)

a1 ,… ,T
∗

=maxa1 ,… , aT∑t=1

T
r t

a=π(sA)

Can you explain what does Markovianity mean?



 

Reinforcement learning

action a

environment state

observation z

agent state 

reward  r

RL
MDP with unknown 
Markovian dynamics

Unknown reward 
function

Solution similar, e.g.

Learning must explore
policies

s A

sE

P(s t+1∣s t , at)

rt=r (st+1 , st)

a1 ,… ,T
∗

=maxa1 ,… , aT∑t=1

T
r t



 

Partially observable MDP (POMDP)

action a

environment state

observation z

agent state 

reward  r

POMDP
Environment not directly
observable

Defined by dynamics

Reward function

Observation model

Solution similar, eg.

s A

sE

P(st+ 1
E ∣s t

E , a t)

r t=r (s t+1 , st)

a1 ,… ,T
∗

=maxa1 ,… , aTE [∑t=1

T
r t ]

P(zt∣s t
E , at)



 

Course outline

• Markov decision processes

• Reinforcement learning
– Value-based, policy-based, model-based

• Partially observable Markov decision processes



 

Toward optimal planning in time series:
Shortest paths

• Associate each edge of graph with nonnegative cost
• Cost of plan is the sum of costs 

DS

CB

A
1 2

3
1

1

3

Shortest path from S to B?



 

Optimal planning (fixed-length plans)

• Cost functional

• Goal:  

L(τ K )=∑k=1

K
l(sk , ak )+lF(sK+1) τK=(a1 ,…, aK )

minτ L( τ)

lF (s)=
0 , s∈SG
∞ , s∉SG

Goal set



 

Solving optimal planning

• Principle of Optimality (Bellman, 1957): An optimal 
policy has the property that whatever the initial state and 
initial decision are, the remaining decisions must 
constitute an optimal policy with regard to the state 
resulting from the first decision. 

• Value-function: 
– cost-to-go

Gk
∗
(sk )=minak ,… , aK {∑i=k

K
l(s i , ai)+lF (sF)}

Gk
∗(sk )



 

Backward value iteration

• Assume we know  

how to compute              ?

Gk
∗
(sk )=minak ,… , aK {∑i=k

K
l(s i , ai)+lF (sF)}

Gk +1
∗ (s)

Gk
∗(sk )

Gk
∗
(sk )=minak {l (sk , ak)+Gk +1

∗
(sk +1) }

=minak {l (sk , ak)+Gk +1
∗

(f (sk , ak ))}

“Try all actions for this step and choose best.”

GK+1
∗ (s)=lF(s)



 

Value iteration, unknown length plans

• Iterating recursion until value function stationary: optimal 
cost plans have been found from all states that can 
reach a goal state

• Using    , optimal actions can be found from

• Complexity 

G∗
(s)=mina {l(s , a)+G∗

( f (s , a))}

a∗
=argmina∈A (s) {l(s , a)+G∗

( f (s ,a))}

G∗

O(K|S||A|)=O(|S|2|A|)

Why? Compare to Dijkstra!

Bellman equation



 

Exercise

• Use backward value iteration for

DS

CB

A
1 2

3
1

1

3

s I=S
SG={B}

Reminder:

G∗
(s)=mina {l(s , a)+G∗

( f (s , a))}



 

Next time: Markov decision processes

• Sutton & Barto, chapters 2-2.3, 2.5-2.6, 3-3.8 due week 
from now

• Complete Quiz 1
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