

ELEC-E8125 Reinforcement Learning Solving discrete MDPs

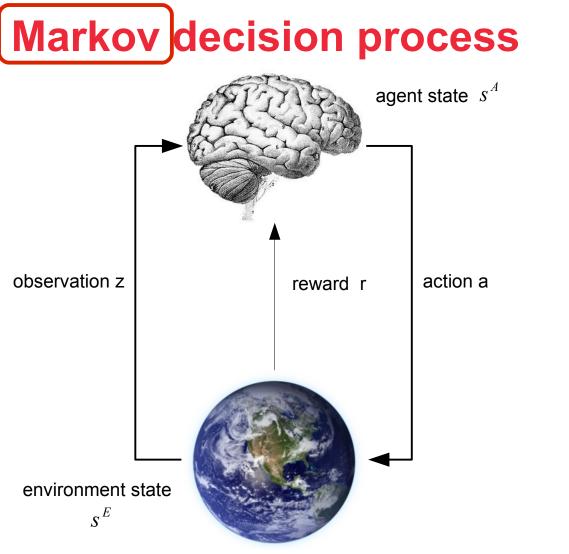
Ville Kyrki 15.9.2020

Today

Markov decision processes

Learning goals

- Understand MDPs and related concepts.
- Understand value functions.
- Be able to implement value iteration.



MDP Environment observable $o = s^E = s^A$

Defined by dynamics $P(s_{t+1}|s_t, a_t)$

And reward function $r_t = r(s_{t+1}, s_t)$

Solution e.g. $a_{1,\ldots,T}^* = max_{a_1,\ldots,a_T} \sum_{t=1}^T r_t$

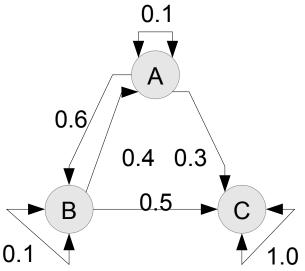
Represented as policy $a = \pi(s^A)$

Let's build this from its building blocks.

Markov property

- "Future is independent of past given the present"
- State sequence *S* is Markov iff \blacktriangleleft "if and only if" $P(S_{t+1}|S_t) = P(S_{t+1}|S_{1}, \dots, S_t)$
- State captures all history.
- Once state is known, history may be thrown away.

- Markov process is a memoryless random process, i.e. random state sequence *S* with the Markov property.
- Defined as (S,T)
 - S: set of states
 - T: S x S \rightarrow [0, 1] state transition function
 - $T_t(s, s') = P(s_{t+1} = s' | s_t = s)$
 - *P* can be represented as transition probability matrix
- State sequences called episodes

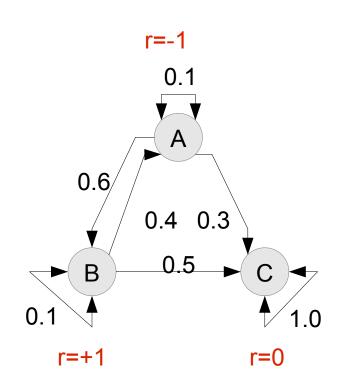


Aalto University School of Electrical Engineering

How to calculate probability of a particular episode? Starting from A, what is the probability of A,B,C?

Markov reward process

- Markov reward process = Markov process with rewards
- Defined by (S, T, r, γ)
 - S, T :as above
 - $r: S \rightarrow \mathcal{R}$ reward function
 - γ [0,1]: discount factor
- Accumulated rewards in finite (*H* steps) or infinite horizon $\sum_{i=1}^{H} \gamma^{t} r_{t} \qquad \sum_{i=1}^{\infty} \gamma^{t} r_{t}$



• *Return G*: accumulated rewards from time t

$$G_t = \sum_{k=0}^{H} \gamma^k r_{t+k+1}$$

Why discount? Return of (A,B,C), γ =0.9?

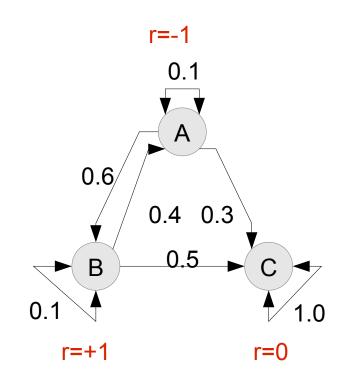
Still no "decision"!

State value function for MRPs

 State value function V(s) is expected cumulative rewards starting from state s

 $V(s) = E[G_t | s_t = s]$

• Value function can be defined by Bellman equation $V(s) = E[G_t|s_t=s]$ $V(s) = E[r_{t+1}+\gamma V(s_{t+1})|s_t=s]$



Aalto University School of Electrical Engineering What is the value function for $\gamma=0$?

Markov decision process (MDP)

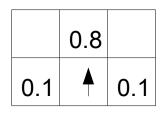
- Markov decision process defined by (S, A, T, R, y)
 - S, γ : as above
 - A: set of actions (inputs)

-
$$T: S \times A \times S \rightarrow [0, 1]$$

 $T_t(s, a, s') = P(s_{t+1} = s' | s_t = s, a_t = a)$
 $P: O = A = O$

- R:
$$S \times A \times S \rightarrow \mathcal{R}$$
 reward function
 $r_t(s, u, s') = r(s_{t+1} = s', s_t = s, a_t = a)$

	+1
	-1



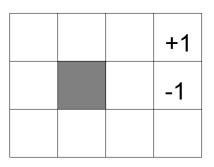
 Goal: Find policy π(s) that maximizes cumulative rewards.

Aalto University School of Electrical Engineering

Grid world example!

Policy

- Deterministic policy $\pi(S): S \rightarrow A$ is mapping from states to actions.
- Stochastic policy π(a|s): S,A → [0,1] is a distribution over actions given states.
- Optimal policy π*(s) is a policy that is better or equal than any other policy (in terms of cumulative rewards)
 - There always exists a deterministic optimal policy for a MDP.

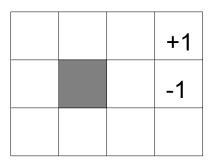


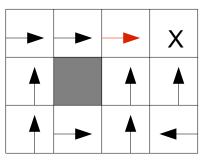


What is grid world optimal policy!

MDP value function

- State-value function of an MDP is expected return starting from state s and following policy π . $V_{\pi}(s) = E_{\pi}[G_t|s_t=s]$
- Can be decomposed into immediate and future components using Bellman expectation equation $V_{\pi}(s) = E_{\pi}[r_t + \gamma V_{\pi}(s_{t+1})|s_t = s]$ $V_{\pi}(s) = \sum_{s'} T(s, \pi(s), s') r(s, \pi(s), s')$ $+ \gamma \sum_{s'} T(s, \pi(s), s') V_{\pi}(s')$





What is value function here?

Action-value function

 Action-value function Q is expected return starting from state s, taking action a, and then following policy π.

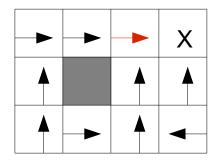
$$Q_{\pi}(s, a) = E_{\pi}[G_{t}|s_{t}=s, a_{t}=a]$$

Using Bellman expectation equation

$$Q_{\pi}(s, a) = E_{\pi}[r_{t} + \gamma Q_{\pi}(s_{t+1}, a_{t+1}|s_{t} = s, a_{t} = a)]$$

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') r(s, a, s')$$

$$+ \gamma \sum_{s'} T(s, a, s') Q_{\pi}(s', \pi(s'))$$



Optimal value function

• Optimal state-value function is maximum value function over all policies.

$$V^*(s) = max_{\pi}V_{\pi}(s)$$

• Optimal action-value function is maximum action-value function over all policies.

$$Q^*(s, a) = max_{\pi}Q_{\pi}(s, a)$$

• All optimal policies achieve optimal state- and action-value functions.

What is the optimal action if we know Q*? What about *V**?

Optimal policy vs optimal value function

Optimal policy for optimal action-value function

$$\pi^*(s) = \operatorname{argmax}_a Q^*(s, a)$$

• Optimal action for optimal state-value function $\pi^{*}(s) = \arg \max_{a} E_{s'}[r(s, a, s') + \gamma V^{*}(s')]$ $\pi^{*}(s) = \arg \max_{a} \sum_{s'} T(s, a, s') (r(s, a, s') + \gamma V^{*}(s'))$

Value iteration

Do you notice that this is an expectation?

Starting from V^{*}₀(s)=0 ∀s
 iterate

$$V_{i+1}^{*}(s) = max_{a} \sum_{s'} T(s, a, s') (r(s, a, s') + \gamma V_{i}^{*}(s'))$$

until convergence.

• Value iteration converges to V*(s).

Compare to $C^*(x) = x i \int I(x) dx$

$$G^*(s) = min_a \left\{ l(s, a) + G^*(f(s, a)) \right\}$$
from last week!

Iterative policy evaluation

- Problem: Evaluate value of policy π .
- Solution: Iterate Bellman expectation back-ups.
- $V_1 \rightarrow V_2 \rightarrow \dots \rightarrow V_{\pi}$
- Using synchronous back-ups:
 - For all states s
 - Update $V_{k+1}(s)$ from $V_k(s')$
 - Repeat

$$V_{k+1}(s) = \sum_{s'} T(s, \pi(s), s') \left(r(s, \pi(s), s') + \gamma V_k(s') \right)$$

$$V_{k+1}(s) = \sum_{a} \pi(a|s) \cdot \sum_{s'} T(s, a, s') \left(r(s, a, s') + \gamma V_k(s') \right)$$

Note: Starting point can be random policy.

From slide 11.

V 0.0 0.0 0.0 0.00.0 0.0 0.0 0.00.0 0.0 0.0 0.00.0 0.0 0.0 0.0

Greedy policy

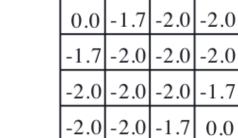
	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
${\longleftrightarrow}$	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow
${\longleftrightarrow}$	\Leftrightarrow	\Leftrightarrow	

	1	2	3
4	5	6	7
8	9	10	11
12	13	14	

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

	Ļ	\Leftrightarrow	\Leftrightarrow
1		\Leftrightarrow	
\longleftrightarrow	ᢗ	\Leftrightarrow	Ŧ
\longleftrightarrow		\rightarrow	

r=-1 for all actions



	←	←	\Leftrightarrow
1	Ļ	\Leftrightarrow	Ļ
1		Ļ	Ļ
\Leftrightarrow	\rightarrow	\rightarrow	

k = 0

k = 1

k = 2

Policy improvement and policy iteration

- Given a policy π , it can be improved by
 - Evaluating V_{π}
 - Forming a new policy by acting greedily with respect to V_{π}
- This always improves the policy.
- Iterating multiple times called *policy* iteration.
 - Converges to optimal policy.

Computational limits – Value iteration

- Complexity O(|A||S|²) per iteration.
- Effective up to medium size problems (millions of states).
- Complexity when applied to action-value function O(|A|²|S|²) per iteration.

- Markov decision processes represent environments with uncertain dynamics.
- Deterministic optimal policies can be found using statevalue or action-value functions.
- Dynamic programming is used in value iteration and policy iteration algorithms.

Next week: From MDPs to RL

- Readings
 - SB Ch. 5-5.4, 5.6, 6-6.5

