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Today

• Direct policy learning via policy gradient.



 

Learning goals

• Understand basis and limitations of policy gradient 
approaches.



 

Motivation

• Even with value function approximation, large state 
spaces can be problematic.

• Learning parametric policies p(a|s,q) directly without 
learning value functions sometimes easier.

• Non-Markov (partially observable) or adversarial 
situations might benefit from stochastic policies.

https://www.youtube.com/watch?v=xyJAvghtqIM

https://www.youtube.com/watch?v=xyJAvghtqIM


 

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learned value function.
• Implicit policy.

Policy-based
• No value function.
• Learned policy.

Actor-critic
• Learned value function.
• Learned policy.

- Can learn stochastic
  policies.
- Usually locally optimal.



 

Stochastic policies

• Discrete actions: Soft-max policy 

• Continuous actions: Gaussian policy

pq(a t∣st)=1/Z eq
T
φ(s t , at)

Normalization constant

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Probability portional to
expontiated linear 
combination of features.

Mean is linear 
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
pq(a t∣st)=q

T φ(s t)+ϵ ϵ∼N (0 ,σ2)

Z=∑a
eq

T
φ( st , at )

Note: Policies include exploration!

But how to fit these? 



 

Supervised policy learning – behavioral 
cloning
• Assume examples of policy are given in form of (x,u) 

pairs.

• How to fit a stochastic policy to these?

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Note: This is not RL!

Example



 

Supervised policy learning – behavioral 
cloning
• Assume examples of policy are given in form of (x,u) 

pairs. Assume independent examples.

• How to fit a stochastic policy to these?

• Maximum likelihood parameter estimation
– Here: maximize probability of actions given states and 

parameters.

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Note: This is not RL!

P(A∣S ;q)=∏t
pq(at∣st)

How to proceed?

Example



 

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2pσ2
e
−(a−μ)2

2σ2P(A∣S ;q)=∏t
pq(at∣st)



 

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2pσ2
e
−(a−μ)2

2σ2

log P(A∣S ;q)=∑t
log pq(at∣s t)

∇ log P(A∣S ;q)=∑t
∇ log pq (a t∣s t)

P(A∣S ;q)=∏t
pq(at∣st)

But we don’t have examples 
so we cannot use supervised learning!



 

What is a good policy?

• How to measure policy quality?

• More generally,

R(q)=E [∑t=0

T
γ

t r t ]

R(q)=E [∑t= 0

T
c t r t ]

Can also represent
average reward per
time step.

How to optimize parameters?

General time scaling factor



 

Policy gradient

• Use gradient ascent on R(q).

• Update policy parameters by

• How to calculate gradient?

qm+1=qm+αm∇q R∣q=qm

R(q)=E [∑t= 0

T
c t r t ]

Depends on q.

∑
m=0

∞

αm>0 ∑
m=0

∞

αm
2
<∞

Guarantees convergence to
local minimum.

How to estimate gradient from data (if we 
have a chance to try different policies)?



 

Finite difference gradient estimation

• What is gradient?
– Vector of partial derivatives.

• How to estimate derivative?
– Finite difference:

• For policy gradient:
– Generate variation
– Estimate experimentally
– Compute gradient
– Repeat until estimate converged

f ' (x )≈
f (x+dx )− f ( x)

dx

Δq i

R(q+Δ qi)≈ R̂i=∑t=0

H
c t r t

[ g FD
T , Rref ]

T
=(ΔΘ

T
ΔΘ )

−1
ΔΘ

T R̂
ΔΘ

T
=[Δ q1,… ,Δ q I

1,… ,1 ]
R̂T
=[ R̂1,… , R̂ I ]

Where does this come from?

Not easy to choose.

R̂i≈Rref + g
T
Δqi



 

Likelihood-ratio approach

• Assume trajectories tau are generated by roll-outs, thus

• Expected return can then be written

• Gradient is thus

• Why do that?

Likelihood ratio “trick”:
Substitute

τ∼ pq (τ )=p (τ∣q) R(τ )=∑t=0

H
c t r t

R(q)=E τ [R( τ )]=∫ pq (τ )R( τ )d τ

∇q R (q)=∫∇q pq(τ )R(τ )d τ

=∫ pq (τ )∇ q log pq (τ )R( τ )d τ

∇q pq( τ )= pq( τ )∇ q log pq (τ )

pq (τ )=p (s0)∏
t=0

H

p (st+1∣st ,a t)pq (at∣st)

Try substitution for log-gradient!

=Eτ [∇ q log pq (τ )R(τ )]

∇q log pq( τ )=∑
t=0

H

∇ q log pq (at∣s t)

We know this!



 

Example differentiable policies

• Soft-max policy 

– Log-policy (score function)

• Gaussian policy

– Log-policy

pq(a t∣st)∝e
q
T
φ( st , at)

Normalization constant missing.

∇q log pq(at∣st)=φ (st ,a t)−Epq [φ (st ,⋅)]

pq(a t∣st)∼N (qTφ (st) ,σ
2)

∇q log pq(at∣st)=
(a t−q

T
φ (st))φ (st)

σ
2

Probability proportional to
exponentiated linear 
combination of features.

Mean is linear 
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
pq(a t∣st)=q

T φ(st)+ϵ ϵ∼N (0 ,σ2)



 

Example differentiable policies

• Discrete neural net policy 

• Gaussian neural network policy

pq(a t∣st)∝e
f q (s t , at)

Normalization constant missing.

pq(a t∣s t)∼N ( f q(st) ,σ
2)

Probability proportional to
exponentiated neural 
network output.

∇q log pq(at∣s t)=
(ut−f q(s t))∇q f q(st)

σ
2

∇q R (q)=Eτ [∇q log pq (τ )R(τ )]
OK, now to applying the policy gradient:



 

MC policy gradient – REINFORCE

• Episodic version shown here.

• Approach:
– Perform episode J (=1,2,3,...).
– Estimate gradient 

– Update policy and repeat with new trial(s) until convergence.

• No need to generate policy variations because of 
stochastic policy.

≈
1
J
∑i=1

J

[(∑t=0

H
∇q logpq (at

[i ]
∣st
[i ]
))(∑t

r t ,i )]

gR E=E τ [(∑t=0

H
∇q log pq(a t∣s t))R (i) ]

Reward for trial i.

Use empirical
mean.



 

Limitations so far

• High variance (uncertainty) in gradient estimate because 
of stochastic policy.

• Slow convergence, hard to choose learning rate.
– Parametrization dependent gradient estimate.

• On-policy method.



 

Decreasing variance by adding baseline

• Constant baseline can be added to reduce variance of 
gradient estimate.

• Does not cause bias because

∇q R (q)=E τ [∇q log pq (τ )(R( τ )−b)]

Eτ [∇q log pq (τ )b ]=∫ pq (τ )∇ q log pq (τ )bd τ=

∫∇ q pq (τ )bd τ=b∇ q∫ pq (τ )d τ=b∇q1=0

=Eτ [∇q log pq (τ )R(τ )]

Intuition:
Modifying rewards by a constant
does not change optimal policy.



 

Episodic REINFORCE with optimal 
baseline
• Optimal baseline for episodic REINFORCE (minimize 

variance of estimator):

• Approach:
– Perform trial J (=1,2,3,...).
– For each gradient element h

• Estimate optimal baseline
• Estimate gradient  

– Repeat until convergence.

bh=
Eτ [ (∑t=0

H
∇ qh log pq (a t∣st))

2

Rτ ]
E τ [(∑t=0

H
∇ q h

log pq (at∣st))]
2

In practice, approximate
by empirical mean
(average over trials).

bh

gh=
1
J
∑i=1

J

[(∑t=0

H
∇q h

log pq(a t
[ i]
∣st
[i ]
))(R (i)−bh

[ i]
) ]

Even with optimal baseline, variance can be an issue.

Component-wise!



 

Policy gradient theorem

• Observation: Future actions do 
not depend on past rewards.

• PGT:
– Reduces variance of estimate → 

Fewer samples needed on 
average.

E [∇q logpq(a t∣st)r k ]=0 ∀ t>k

“don't take into account past rewards 
when evaluating the effect of an 
action” (causality, taking an action 
can only affect future rewards)

gPGT=E τ [∑k=0

H

(∑t=0

k
∇ qh log pq (a t∣s t))(ak r k−bk

h
)]

Note: If only rewards at final time step, this is
equivalent to REINFORCE.



 

Off-policy policy gradient

• What if we have samples from another policy (e.g. 
earlier timesteps)?

Optimize 

using samples from  

• Use importance sampling!

E τ∼pq (τ) [R( τ)]
p ' (τ )

E s∼ p(s ) [ f (s )]=∫ p (s ) f (s)ds

=E s∼q (s )[ p(s)q (s)
f (s )]

Where does this
come from?

exploration policy



 

Off-policy policy gradient

• What if we have samples from another policy (e.g. 
earlier timesteps)?

Optimize 

using samples from  

• Use importance sampling!

E τ∼pq (τ) [R( τ)]
p ' (τ )

Where does this
come from?

E τ∼p ' (τ)[ pq (τ)p ' ( τ)
R(τ )]Thus, optimize

E s∼ p(s ) [ f (s )]=∫ p (s ) f (s)ds

=E s∼q (s )[ p(s)q (s)
f (s )]

exploration policy

Weight samples by
their relative 
probability



 

Off-policy policy gradient

• We had earlier

• Thus  

E τ∼p ' (τ)[ pq (τ)p ' ( τ)
R(τ )]

pq(τ )

p '( τ)
=

p(s0)∏
t=0

H

p(st+1∣st ,at) pq (a t∣s t)

p(s0)∏
t=0

H

p(st+1∣st , at)p ' (at∣s t)

=

∏
t=0

H

pq(a t∣s t)

∏
t=0

H

p ' (a t∣s t)

pq (τ )=p (s0)∏
t=0

H

p (st+1∣st ,a t)pq (at∣st)



 

Off-policy policy gradient

• Now the gradient

∇q E τ∼p ' (τ)[ pq(τ)p ' ( τ)
R(τ )]=E τ∼p '(τ)[∇ qpq(τ)p ' ( τ)

R (τ)]
=E τ∼p ' (τ)[ pq(τ)p ' (τ)

∇q logpq(τ )R(τ )]
=Eτ∼p ' ( τ)[(∏t

pq( τ)

p ' (τ) )(∑t
∇q log pq (a t∣st)) (∑t

r t )]
∇q E τ∼pq (τ) [R (τ) ]=Eτ∼pq ( τ)[ (∑t

∇q log pq(a t∣st)) (∑t
r t ) ]

Compare to on-policy (REINFORCE)



 

Gradient vs natural gradient

• Gradient depends on 
parametrization.

• Natural gradient 
parametrization 
independent.

• Fisher information matrix

∇q
NG pq (a∣s )=Fq

−1∇ qpq(a∣s)

Fq=E [∇ q log pq (a∣s)∇ q log pq (a∣s )
T ]

Normalizes parameter influence.

Potentially improves convergence significantly,
in practice sample-based approximation less useful.

Will be used later!

Intuition: Divide gradient update 
by second derivative.



 

Summary

• Policy gradient methods can be used for stochastic 
policies and continuous action spaces.

• Finite-difference approaches approximate gradient by 
policy adjustments.

• Likelihood ratio-approaches calculate gradient through 
known policy.

• Policy gradient often requires very many updates 
because of noisy gradient and small update steps → 
slow convergence.



 

Next: Actor-critic approaches

• Can we combine policy learning with value-based 
methods?

• Readings
– Sutton&Barto Ch 13.5
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