
ELEC-E8125 Reinforcement Learning
Policy gradient

Ville Kyrki

6.10.2020

Today

• Direct policy learning via policy gradient.

Learning goals

• Understand basis and limitations of policy gradient
approaches.

Motivation

• Even with value function approximation, large state
spaces can be problematic.

• Learning parametric policies p(a|s,q) directly without
learning value functions sometimes easier.

• Non-Markov (partially observable) or adversarial
situations might benefit from stochastic policies.

https://www.youtube.com/watch?v=xyJAvghtqIM

https://www.youtube.com/watch?v=xyJAvghtqIM

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learned value function.
• Implicit policy.

Policy-based
• No value function.
• Learned policy.

Actor-critic
• Learned value function.
• Learned policy.

- Can learn stochastic
 policies.
- Usually locally optimal.

Stochastic policies

• Discrete actions: Soft-max policy

• Continuous actions: Gaussian policy

pq(a t∣st)=1/Z eq
T
φ(s t , at)

Normalization constant

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Probability portional to
expontiated linear
combination of features.

Mean is linear
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
pq(a t∣st)=q

T φ(s t)+ϵ ϵ∼N (0 ,σ2)

Z=∑a
eq

T
φ(st , at)

Note: Policies include exploration!

But how to fit these?

Supervised policy learning – behavioral
cloning
• Assume examples of policy are given in form of (x,u)

pairs.

• How to fit a stochastic policy to these?

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Note: This is not RL!

Example

Supervised policy learning – behavioral
cloning
• Assume examples of policy are given in form of (x,u)

pairs. Assume independent examples.

• How to fit a stochastic policy to these?

• Maximum likelihood parameter estimation
– Here: maximize probability of actions given states and

parameters.

pq(a t∣st)∼N (qTφ (st) ,σ
2)

Note: This is not RL!

P(A∣S ;q)=∏t
pq(at∣st)

How to proceed?

Example

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2pσ2
e
−(a−μ)2

2σ2P(A∣S ;q)=∏t
pq(at∣st)

Example: Maximum likelihood estimation

• Maximize log-likelihood

N (μ ,σ2)=
1

√ 2pσ2
e
−(a−μ)2

2σ2

log P(A∣S ;q)=∑t
log pq(at∣s t)

∇ log P(A∣S ;q)=∑t
∇ log pq (a t∣s t)

P(A∣S ;q)=∏t
pq(at∣st)

But we don’t have examples
so we cannot use supervised learning!

What is a good policy?

• How to measure policy quality?

• More generally,

R(q)=E [∑t=0

T
γ

t r t]

R(q)=E [∑t= 0

T
c t r t]

Can also represent
average reward per
time step.

How to optimize parameters?

General time scaling factor

Policy gradient

• Use gradient ascent on R(q).

• Update policy parameters by

• How to calculate gradient?

qm+1=qm+αm∇q R∣q=qm

R(q)=E [∑t= 0

T
c t r t]

Depends on q.

∑
m=0

∞

αm>0 ∑
m=0

∞

αm
2
<∞

Guarantees convergence to
local minimum.

How to estimate gradient from data (if we
have a chance to try different policies)?

Finite difference gradient estimation

• What is gradient?
– Vector of partial derivatives.

• How to estimate derivative?
– Finite difference:

• For policy gradient:
– Generate variation
– Estimate experimentally
– Compute gradient
– Repeat until estimate converged

f ' (x)≈
f (x+dx)− f (x)

dx

Δq i

R(q+Δ qi)≈ R̂i=∑t=0

H
c t r t

[g FD
T , Rref]

T
=(ΔΘ

T
ΔΘ)

−1
ΔΘ

T R̂
ΔΘ

T
=[Δ q1,… ,Δ q I

1,… ,1]
R̂T
=[R̂1,… , R̂ I]

Where does this come from?

Not easy to choose.

R̂i≈Rref + g
T
Δqi

Likelihood-ratio approach

• Assume trajectories tau are generated by roll-outs, thus

• Expected return can then be written

• Gradient is thus

• Why do that?

Likelihood ratio “trick”:
Substitute

τ∼ pq (τ)=p (τ∣q) R(τ)=∑t=0

H
c t r t

R(q)=E τ [R(τ)]=∫ pq (τ)R(τ)d τ

∇q R (q)=∫∇q pq(τ)R(τ)d τ

=∫ pq (τ)∇ q log pq (τ)R(τ)d τ

∇q pq(τ)= pq(τ)∇ q log pq (τ)

pq (τ)=p (s0)∏
t=0

H

p (st+1∣st ,a t)pq (at∣st)

Try substitution for log-gradient!

=Eτ [∇ q log pq (τ)R(τ)]

∇q log pq(τ)=∑
t=0

H

∇ q log pq (at∣s t)

We know this!

Example differentiable policies

• Soft-max policy

– Log-policy (score function)

• Gaussian policy

– Log-policy

pq(a t∣st)∝e
q
T
φ(st , at)

Normalization constant missing.

∇q log pq(at∣st)=φ (st ,a t)−Epq [φ (st ,⋅)]

pq(a t∣st)∼N (qTφ (st) ,σ
2)

∇q log pq(at∣st)=
(a t−q

T
φ (st))φ (st)

σ
2

Probability proportional to
exponentiated linear
combination of features.

Mean is linear
combination of features.

Can also be understood as linear policy plus
exploration uncertainty
pq(a t∣st)=q

T φ(st)+ϵ ϵ∼N (0 ,σ2)

Example differentiable policies

• Discrete neural net policy

• Gaussian neural network policy

pq(a t∣st)∝e
f q (s t , at)

Normalization constant missing.

pq(a t∣s t)∼N (f q(st) ,σ
2)

Probability proportional to
exponentiated neural
network output.

∇q log pq(at∣s t)=
(ut−f q(s t))∇q f q(st)

σ
2

∇q R (q)=Eτ [∇q log pq (τ)R(τ)]
OK, now to applying the policy gradient:

MC policy gradient – REINFORCE

• Episodic version shown here.

• Approach:
– Perform episode J (=1,2,3,...).
– Estimate gradient

– Update policy and repeat with new trial(s) until convergence.

• No need to generate policy variations because of
stochastic policy.

≈
1
J
∑i=1

J

[(∑t=0

H
∇q logpq (at

[i]
∣st
[i]
))(∑t

r t ,i)]

gR E=E τ [(∑t=0

H
∇q log pq(a t∣s t))R (i)]

Reward for trial i.

Use empirical
mean.

Limitations so far

• High variance (uncertainty) in gradient estimate because
of stochastic policy.

• Slow convergence, hard to choose learning rate.
– Parametrization dependent gradient estimate.

• On-policy method.

Decreasing variance by adding baseline

• Constant baseline can be added to reduce variance of
gradient estimate.

• Does not cause bias because

∇q R (q)=E τ [∇q log pq (τ)(R(τ)−b)]

Eτ [∇q log pq (τ)b]=∫ pq (τ)∇ q log pq (τ)bd τ=

∫∇ q pq (τ)bd τ=b∇ q∫ pq (τ)d τ=b∇q1=0

=Eτ [∇q log pq (τ)R(τ)]

Intuition:
Modifying rewards by a constant
does not change optimal policy.

Episodic REINFORCE with optimal
baseline
• Optimal baseline for episodic REINFORCE (minimize

variance of estimator):

• Approach:
– Perform trial J (=1,2,3,...).
– For each gradient element h

• Estimate optimal baseline
• Estimate gradient

– Repeat until convergence.

bh=
Eτ [(∑t=0

H
∇ qh log pq (a t∣st))

2

Rτ]
E τ [(∑t=0

H
∇ q h

log pq (at∣st))]
2

In practice, approximate
by empirical mean
(average over trials).

bh

gh=
1
J
∑i=1

J

[(∑t=0

H
∇q h

log pq(a t
[i]
∣st
[i]
))(R (i)−bh

[i]
)]

Even with optimal baseline, variance can be an issue.

Component-wise!

Policy gradient theorem

• Observation: Future actions do
not depend on past rewards.

• PGT:
– Reduces variance of estimate →

Fewer samples needed on
average.

E [∇q logpq(a t∣st)r k]=0 ∀ t>k

“don't take into account past rewards
when evaluating the effect of an
action” (causality, taking an action
can only affect future rewards)

gPGT=E τ [∑k=0

H

(∑t=0

k
∇ qh log pq (a t∣s t))(ak r k−bk

h
)]

Note: If only rewards at final time step, this is
equivalent to REINFORCE.

Off-policy policy gradient

• What if we have samples from another policy (e.g.
earlier timesteps)?

Optimize

using samples from

• Use importance sampling!

E τ∼pq (τ) [R(τ)]
p ' (τ)

E s∼ p(s) [f (s)]=∫ p (s) f (s)ds

=E s∼q (s)[p(s)q (s)
f (s)]

Where does this
come from?

exploration policy

Off-policy policy gradient

• What if we have samples from another policy (e.g.
earlier timesteps)?

Optimize

using samples from

• Use importance sampling!

E τ∼pq (τ) [R(τ)]
p ' (τ)

Where does this
come from?

E τ∼p ' (τ)[pq (τ)p ' (τ)
R(τ)]Thus, optimize

E s∼ p(s) [f (s)]=∫ p (s) f (s)ds

=E s∼q (s)[p(s)q (s)
f (s)]

exploration policy

Weight samples by
their relative
probability

Off-policy policy gradient

• We had earlier

• Thus

E τ∼p ' (τ)[pq (τ)p ' (τ)
R(τ)]

pq(τ)

p '(τ)
=

p(s0)∏
t=0

H

p(st+1∣st ,at) pq (a t∣s t)

p(s0)∏
t=0

H

p(st+1∣st , at)p ' (at∣s t)

=

∏
t=0

H

pq(a t∣s t)

∏
t=0

H

p ' (a t∣s t)

pq (τ)=p (s0)∏
t=0

H

p (st+1∣st ,a t)pq (at∣st)

Off-policy policy gradient

• Now the gradient

∇q E τ∼p ' (τ)[pq(τ)p ' (τ)
R(τ)]=E τ∼p '(τ)[∇ qpq(τ)p ' (τ)

R (τ)]
=E τ∼p ' (τ)[pq(τ)p ' (τ)

∇q logpq(τ)R(τ)]
=Eτ∼p ' (τ)[(∏t

pq(τ)

p ' (τ))(∑t
∇q log pq (a t∣st)) (∑t

r t)]
∇q E τ∼pq (τ) [R (τ)]=Eτ∼pq (τ)[(∑t

∇q log pq(a t∣st)) (∑t
r t)]

Compare to on-policy (REINFORCE)

Gradient vs natural gradient

• Gradient depends on
parametrization.

• Natural gradient
parametrization
independent.

• Fisher information matrix

∇q
NG pq (a∣s)=Fq

−1∇ qpq(a∣s)

Fq=E [∇ q log pq (a∣s)∇ q log pq (a∣s)
T]

Normalizes parameter influence.

Potentially improves convergence significantly,
in practice sample-based approximation less useful.

Will be used later!

Intuition: Divide gradient update
by second derivative.

Summary

• Policy gradient methods can be used for stochastic
policies and continuous action spaces.

• Finite-difference approaches approximate gradient by
policy adjustments.

• Likelihood ratio-approaches calculate gradient through
known policy.

• Policy gradient often requires very many updates
because of noisy gradient and small update steps →
slow convergence.

Next: Actor-critic approaches

• Can we combine policy learning with value-based
methods?

• Readings
– Sutton&Barto Ch 13.5

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 31
	Slide 37
	Slide 38

