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Today

• Combining policy gradient with value functions

→ actor-critic methods



 

Learning goals

• Understand basis of actor-critic approaches.



 

Motivation

• Policy gradient (PG) methods may be often ineffective in 
terms of requiring lots (and lots and lots) of data 
because of high variance of gradient estimates.
– Similar to MC approaches for value function estimation.

• Temporal difference (TD) approaches have smaller 
variance compared to MC but they cannot handle 
stochastic policies or continuous action spaces like PG.

• Can we combine PG with something like TD?



 

Value-based vs policy-based RL

VALUE FUNCTION POLICY

Value-based
• Learnt value function.
• Implicit policy.

Policy-based
• No value function.
• Learnt policy.

Actor-critic
• Learnt value function.
• Learnt policy.



 

Actor-critic approach – overview 

• Critic estimates value 
function.

• Actor updates policy in 
direction of critic.

• For policy gradient, critic 
estimates value function.
– See previous lectures. 



 

Policy gradient – recap
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Note: Discount omitted
for getting shorter notation
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Policy gradient – recap

REINFORCE

1. Run policy, collect  

2. 

3. θ←θ+α∇ θ R(θ)

What’s this?
Does it look familiar?

Qπ (st , at)=∑t=t '

T
E [ r (s t '

i , at '
i
)∣st , a t ]

Q is true expected reward, unlike the estimate in step 2.
This would reduce variance of the gradient estimate.
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Remember the baselines?
∇θ R (θ)=Eθ [ ∇θ log pθ (τ )(R(τ )−b) ]
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Average is a good baseline:

But what does the average mean here?
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Remember the baselines?
∇θ R (θ)=Eθ [ ∇θ log pθ (τ )(R(τ )−b) ]

Average is a good baseline:

But what does the average mean here?

b approximates the state value function V(x)!

A(st
i ,a t

i)advantage function

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣s t

i
)A (s t

i ,a t
i
))

b t=
1
J∑i=1

J
Q(s t

i , at
i
)

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ logπθ(a t

i
∣st

i
)(Q(s t

i , at
i
)−b ))

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
∣s t

i
)(Q(st

i , at
i
)−V ( st

i
)))



 

Determining the advantage

∇θ R(θ)≈
1
J∑i=1

J

(∑t=0

T
∇ θ log πθ(a t

i
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i
)A (s t

i ,a t
i
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How to find a good
estimate for this?

Estimate Q, V, or A?

V has the fewest parameters, so let’s estimate it (from data).
But how to then get A?

A(st ,a t)=Q (st ,a t)−V (st)

Q(s t ,a t)=r (st , a t)+γ E st+1∼π (st+1∣st ,a t) [V (st+ 1)]

A(s t ,a t)≈r(st , at )
+γV (st+1)−V (st)

Does this look familiar?

Thus, knowing V allows approximating A.

How to fit V?



 

Fitting value functions (mostly recap)

• Episodic batch fitting: (1) gather data, (2) fit (least 
squares) over gathered data. 

• Data = state-value pairs 

• Requires episodic environments to get the value.
• Fitting criterion L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{(sti ,∑t '=t

T
r t '
i )}

y t
i

Any parametric function
approximator

But what about non-episodic?
What do we do then?



 

Fitting value functions (mostly recap)

• Non-episodic batch fitting: (1) gather data, (2) fit (least 
squares) over gathered data. 

• Data = state-value pairs 

• Identical fitting criterion
L(ϕ)=∑i‖V ϕ(s i)− y i‖

2

{( s t
i , r t

i
+V (s t+1

i
)) }

y t
i

Any parametric function
approximator



 

Wrap-up: A batch TD actor critic 

Batch actor-critic

1. Run policy, collect  

2. Fit  

3. Evaluate

4. Evaluate 

5. Update

{τ i } τ i=(s0
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i ,a1
i , r1

i ,…)

θ←θ+α∇ θ R(θ)

∇θ R(θ)≈
1
J∑i=1

J
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What about discount?

V ϕ (st)

A(s t ,a t)≈r(st , at )
+γV (s t+1)−V (s t)



 

An on-line TD actor critic (with discount) 

On-line actor-critic

1. Take action 

2. Update          using  

3. Evaluate

4. Evaluate 

5. Update

a=π(a∣s)

θ←θ+α∇ θ R(θ)

∇θ R(θ)≈∇ θ log πθ (at
i∣s t

i)A (s t
i ,a t

i)

ϕ←ϕ+β (r t+γV ϕ(s t+ 1)−V ϕ (s t))∇ ϕV ϕ(s t)V ϕ (st)

learning
rate

From lecture 5!

In practice, even this works best in batches
(decreases variance in gradient estimates).

Note: TD estimate can be biased.

A(s t ,a t)≈r(st , at )
+γV (st+1)−V (st)



 

Challenge: Gradient step sizes

θ←θ+α∇ θ R(θ)

Gradient step size affects convergence (speed) greatly
but is difficult to set.

Incorrect step size may lead to divergence or slow convergence.

How to guarantee policy improvement?



 

Reformulating policy gradient through 
surrogate advantage
• How to predict performance of updated policy (since we 

do not have data about it yet)?

• Surrogate advantage            approximates performance 
difference between previous and updated policies

Rθ old

IS
(θ)=Eτ∼πθold [

πθ (a t∣st)

πθ old
(a t∣st)

A
πθold (st , a t)]

Rθold

IS (θ)

See the importance sampling in effect!

Can we find a lower bound for this? 
Yes, using KL-divergence.



 

Bounding surrogate advantage

maxθ (Rθold

IS
(θ)−c DKL

max
(θold ,θ))

Result: Policy is guaranteed to improve by optimizing

where

is the maximum Kullback-Leibler divergence between the policies.

DKL
max (θold ,θ)

known constant

In practice leads to slow convergence, 
not easy to optimize.

Optimizing the lower bound function 
does not require step size!

Intuition: The further you go from
current policy, the larger is the
penalty.



 

Trust region policy optimization
(Schulman et al. 2015)

maxθRθold

IS (θ)

Instead of lower bound, optimize surrogate advantage and constrain 
KL-divergence:

such that 

Intuition: Limit the policy parameter change such that the actions do 
not change too much in the relevant part of state space. 

In practice, this is still (too) costly to compute and the constraint is 
approximated (details in the paper).

D̄KL(θold ,θ)≡Eτ∼πθ old
[DKL(πθ( .∣s ), πθold

( .∣s ))]≤δ

Next: a simple and practical way to implement
the same idea (and it even works well usually).



 

Proximal policy optimization
(Schulman et al. 2017)
Remember the surrogate advantage? 

Optimize instead

Rθ old

IS
(θ)=E τ∼πθold [

πθ (a t∣s t)

πθ old
(a t∣s t)

A
πθold(s t , a t)]

LCLIP(θ)=E τ∼πθold

[min(g t(θ)A ,clip(g t(θ) ,1−ϵ ,1+ϵ)A)]

g t (θ)

Looks horrible, look at the
figure instead.
In practice: Limit how much
benefit there is for changes.  



 

Proximal policy optimization
(Schulman et al. 2017)

PPO is a standard baseline at the moment.

Algorithm: PPO
for i = 1, 2, … do
    Run policy, collect trajectories
    Compute advantage estimates 
        using current value function
    Update policy by maximizing                  for K epochs of stochastic
        gradient ascent
    Fit              by minimizing                                         using gradient 
        descent

{ τ i } τ i=(s0
i ,a0

i , r0
i , s1

i ,a1
i , r1

i ,…)

V ϕ (st)
LCLIP(θ)

V ϕ (st) L(ϕ)≡∑i‖V ϕ(si)− y i‖
2

Other variants
possible

A(s t ,a t)≈r(st , at )
+γV (st+1)−V (st)



 

Summary

• Actor-critic approaches allow addressing continuing 
problems and continuous action spaces. 

• They may also learn faster than policy gradient because 
variance of policy gradient estimate is reduced.

• TRPO/PPO aim to control extent of policy update steps 
to avoid oscillation/divergence due to large updates.



 

Next: Optimal control – 
Toward model-based RL
• Even with a critic, policy-based approaches often require 

huge amounts of data. 

• Can we somehow benefit even more from earlier 
experiences? 

• Reading: Introduction to Linear Quadratic Regulation (R. 
Platt).

• Note: No quiz for next week.
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