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Learning goals

• Understand basic approaches for model-based 
reinforcement learning.



 

Anatomy of reinforcement learning
Model-based

Adopted from Sergey Levin.

Fit a model to 
estimate return

Update
policy

Run policy to 
generate samples

Estimate                       (policy gradient)
Fit                                 (Q-learning, actor-critic)
Estimate                       (model-based)

∇θ R

p(st+1∣st , at)

                            (policy gradient)
                            (Q-learning)
Optimize              (model-based)

θ←θ+α∇ θ R(θ)

πθ(a∣s )

Qϕ (s , a)

argmax uQϕ(s , a)



 

Motivation (partial recap)

• Reinforcement learning has limited sample efficiency.

• Learned policies are task(reward-function)-specific, 
learned policies cannot be directly reused.

• Learned dynamics model is reusable and can be used to 
reason about potential futures.

• Sometimes we know the model, e.g. in games!



 

Model definition and types

• Dynamics model                           or

• Reward model                              or

• Models are usually learned.
– Parametric regression (e.g. neural net) common.

• May be also known (e.g. games, simulators)
– Even physics based models need to be often calibrated.

• Also other possibilities (active research area)
– Latent variable models, graph neural networks, non-parametric 

regression models such as Gaussian processes, ...

s t+1= f (st ,a t)

r t+1=r (st , at)

f (st+1∣st ,a t)

r (r t+1∣st ,at)



 

Which model to use?

Gaussian process (GP)

• Data-efficient

• Slow with big datasets

• May be too smooth for 
non-smooth dynamics

Neural networks

• Expressive 

• Unpredictable with 
sparse data (overfit)

Linear models

• May be used locally

• Do not overfit

Domain specific parametric models (e.g. physics parameters) can also be used. 
→ Traditional control engineering approach of model identification + control.



 

Spectrum of model-based RL

Time of planning

On-line
● Act on current state
● Act without learning
● Better in unfamiliar situations

Off-line
● Fast online computation
● Predictable within

familiar situations

learn to act in
any situation
(learn policy)

how to act in
current situation
(choose action)



 

Spectrum of model-based RL

Time of planning

On-line Off-line

Discrete
actions
● MCTS
● ...

Continuous
actions
● iLQR
● ...

Simulate
environment
● DYNA
● ...

Assist
learning
● Policy backprop
● ...
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We kind of saw this already 
last week. 



 

Continuous on-line planning: iLQR + 
learned model

Input: base policy 
Run base policy to collect data
Repeat
       Fit dynamics model                 to minimize
       Use model to plan (e.g. iLQR) actions
       Execute first planned action, observe resulting state
       Update dataset 

π0

s '

D←{(s ,a , s ' )i }

f (s ,a ) ∑i
‖ f (si ,a i)−si '‖

2

D←D∪{(s , a , s ')}



 

Continuous on-line planning: iLQR + 
learned model

Input: base policy 
Run base policy to collect data
Repeat
       Fit dynamics model                 to minimize
       Use model to plan (e.g. iLQR) actions
       Execute first planned action, observe resulting state
       Update dataset 

π0

s '

● Sample efficient.
● Computationally expensive for two reasons. 

● Dynamics fitting costly → model may be fitted only periodically (every n steps).
● Planning costly for long horizons.

● Robust to moderate model errors.
● Choice of regression model is an important design parameter.

This is model-predictive control (MPC) with learned dynamics.
MPC horizon length is limited, can we do something?
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Combining parametric policy with 
learned dynamics by backpropagation

r ta t

s t

θ

r t−1a t−1

s t−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Backprop ~ chain rule of partial derivatives

dynamicsrewardpolicy

∇θπ (st , a t)
∇s r (s t , a t)

∇a r (s t , a t) ∇s f (s t−1 , a t−1)

∇a f (st−1 , a t−1)



 

Combining parametric policy with 
learned dynamics by backpropagation

Run base policy to collect data
Repeat
       Fit dynamics model                 to minimize
       Calculate policy gradient update by backpropagating through dynamics
       Execute updated policy (1 or more steps), collect data
       Update dataset 

D←{(s ,a , s ')i }

f ϕ(s ,a) ∑i
‖f ϕ(s i , ai)−s i '‖

2

D←D∪{(s , a , s ')}

r t

θ

r t−1

Backprop ~ chain rule of partial derivatives

a t

st

a t−1

st−1

∂ r t
∂θ

=
∂ rt
∂ a t

∂ a t
∂θ

+
∂ r t
∂ st

∂ s t
∂ θ

∂ s t
∂θ

=
∂ st

∂ s t−1

∂ st−1

∂θ
+

∂ st
∂ a t−1

∂ at−1

∂ θ

Tools handle this automatically
by automatic differentiation.



 

Continuous on-line planning: iLQR + 
learned model

Input: base policy 
Run base policy to collect data
Repeat
       Fit dynamics model                 to minimize
       Use model to plan (e.g. iLQR) actions
       Execute first planned action, observe resulting state
       Update dataset 

π0

s '

● Sample efficient.
● Computationally expensive for two reasons. 

● Dynamics fitting costly → model may be fitted only periodically (every n steps).
● Planning costly for long horizons.

● Robust to moderate model errors.
● Choice of regression model is an important design parameter.

D←{(s ,a , s ' )i }

f (s , a) ∑i
‖f (s i ,a i)−s i '‖

2

D←D∪{(s , a , s ')}



 

Example
PILCO (Deisenroth&Rasmussen, 2011)
• Dynamics learning: Use Gaussian process 

models to include model uncertainty. 
Known quadratic reward.

• Simulation: Simulate trajectory with learned 
model, including uncertainty. 

• Policy: Radial basis function.
• Policy update: Calculate analytically policy 

gradient using learned dynamics and 
optimize with quasi-Newton optimizer 
(BFGS).

• GP → Very sample efficient. Cannot handle 
large dataset.

Reward function can also be learned
using GP, e.g. BlackDROPS (2017).



 

• Idea: Learn also regression function for rewards.

• BlackDROPS (2017) uses a Gaussian process to model 
reward function as well as dynamics.

• Uses CMA-ES (gradient free optimizer) for planning.
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Simulate environment to generate 
additional data: DYNA

Update using experience

Update using 
simulated experience

Learn dynamics
model

Generate data
by simulating
dynamics
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Monte Carlo tree search

• Search method for optimal decision making.

• State-of-the-art for playing games (e.g. Alpha Go).

• Iteratively builds a search tree.
• Phases:

– Selection: Choose a promising node to expand.
– Expansion: Add a new node.

– Simulation: Simulate value for new node.

– Backup: Back-up value to root (update values for parents).



 

MCTS operation

• From start node S choose actions 
to walk down tree until reaching a 
leaf node.

• Choose an action and create a 
child node N for that action.

• Perform a random roll-out (take 
random actions) until end of 
episode (or for a fixed horizon).

• Record returns as value for N and 
back up value to root.



 

Node selection in MCTS

• Node selection in search has to balance exploration and 
exploitation (note difference to RL, here x&x is made 
only using simulation).

• Idea: Explore when uncertain of outcome.

• Upper confidence bound 1 (UCB1) on trees (UCT).
– A bound for value of a node (Kocsis&Szepesvari, 2006).

Q+
(s , a)=Q(s , a)+c √

logN (s)
N (s , a)

Positive exploration constant Visitation count



 

MCTS simulation phase

• Perform one or several roll-outs from leaf node using 
random action selection.

• Stop at terminal state or until a discount horizon is 
reached.

• Estimate value of state as mean return of the N 
simulations:

V (s)=
1
N∑i

Gi



 

MCTS: Example in game playing

• Value number of won games.



 

Example: Alpha Go (2016)

• Policy learned initially to imitate human players.
• Updated through policy gradient and self-play.

Δθ∝∇ θ log p (a t∣st )Rt

Δ ϕ∝∇ϕV ϕ(s)(R−vϕ (s))



 

Example: Alpha Go (2016)

• Action chosen by MCTS.
• Action evaluation uses estimated value and a roll-out.
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The ideas can also be combined!



 

Summary

• Model-based RL requires typically less data than value-
based or policy gradient approaches.

• Learned dynamics can be transferred across tasks.

• Potentially suboptimal: models do not optimize for task 
performance and policy optimization may be prone to 
local minima.

• Sometimes models are harder to learn than policy.
• Often require explicit choices (e.g. time horizon).



 

Next: Partial observability and POMDPs

• Next week: Guest lecture!

Afterwards:
• What changes if we cannot observe state directly?

• Reading: Tony Cassandra’s on-line tutorial (see 
MyCourses for details)
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