

ELEC-E8125 Reinforcement Learning Model-based RL

Ville Kyrki 27.10.2020

Learning goals

• Understand basic approaches for model-based reinforcement learning.

Anatomy of reinforcement learning Model-based

Adopted from Sergey Levin.

Motivation (partial recap)

- Reinforcement learning has limited sample efficiency.
- Learned policies are task(reward-function)-specific, learned policies cannot be directly reused.
- Learned dynamics model is reusable and can be used to reason about potential futures.
- Sometimes we know the model, e.g. in games!

Model definition and types

- Dynamics model $\mathbf{s}_{t+1} = f(\mathbf{s}_t, \mathbf{a}_t)$ or $f(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$
- Reward model $r_{t+1} = r(s_t, a_t)$ or $r(r_{t+1}|s_t, a_t)$
- Models are usually learned.

- Parametric regression (e.g. neural net) common.

- May be also known (e.g. games, simulators)
 - Even physics based models need to be often calibrated.
- Also other possibilities (active research area)
 - Latent variable models, graph neural networks, non-parametric regression models such as Gaussian processes, ...

Which model to use?

Gaussian process (GP)

- Data-efficient
- Slow with big datasets
- May be too smooth for non-smooth dynamics

Neural networks

- Expressive
- Unpredictable with sparse data (overfit)

Linear models

- May be used locally
- Do not overfit

Domain specific parametric models (e.g. physics parameters) can also be used. \rightarrow Traditional control engineering approach of model identification + control.

how to act in current situation (choose action)

On-line

- Act on current state
- Act without learning
- Better in unfamiliar situations

Time of planning

learn to act in any situation (learn policy)

Off-line

- Fast online computation
- Predictable within familiar situations

We kind of saw this already last week.

Input: base policy π_0

Run base policy to collect data $D \leftarrow \{(s, a, s')_i\}$

Repeat

Fit dynamics model f(s, a) to minimize $\sum_i ||f(s_i, a_i) - s_i'||^2$ Use model to plan (e.g. iLQR) actions Execute first planned action, observe resulting state s'Update dataset $D \leftarrow D \cup \{(s, a, s')\}$

Input: base policy π_{0}

Run base policy to collect data $D \leftarrow \{(s, a, s')_i\}$

Repeat

Fit dynamics model f(s, a) to minimize $\sum_{i} ||f(s_i, a_i) - s_i'||^2$ Use model to plan (e.g. iLQR) actions Execute first planned action, observe resulting state s'

Update dataset $D \leftarrow D \cup \{(s, a, s')\}$

- Sample efficient.
- Computationally expensive for two reasons.
 - Dynamics fitting costly \rightarrow model may be fitted only periodically (every n steps).
 - Planning costly for long horizons.
- Robust to moderate model errors.
- Choice of regression model is an important design parameter.

Aalto University School of Electrical Engineering This is model-predictive control (MPC) with learned dynamics. MPC horizon length is limited, can we do something?

Input: base policy $\boldsymbol{\pi}_0$

Run base policy to collect data $D \leftarrow \{(s, a, s')_i\}$

Repeat

Fit dynamics model f(s, a) to minimize $\sum_i ||f(s_i, a_i) - s_i'||^2$ Use model to plan (e.g. iLQR) actions Execute first planned action, observe resulting state *s*'

Update dataset $D \leftarrow D \cup \{(s, a, s')\}$

- Sample efficient.
- Computationally expensive for two reasons.
 - <u>Dynamics fitting costly</u> \rightarrow model may be fitted only periodically (every n steps).
 - Planning costly for long horizons.
- Robust to moderate model errors.
- Choice of regression model is an important design parameter.

Aalto University School of Electrical Engineering This is model-predictive control (MPC) with learned dynamics. MPC horizon length is limited, can we do something?

Backprop ~ chain rule of partial derivatives

Combining parametric policy with learned dynamics by backpropagation

Backprop ~ chain rule of partial derivatives

 $\frac{\partial r_t}{\partial \theta} = \frac{\partial r_t}{\partial a_t} \frac{\partial a_t}{\partial \theta} + \frac{\partial r_t}{\partial s_t} \frac{\partial s_t}{\partial \theta}$

Combining parametric policy with learned dynamics by backpropagation

Run base policy to collect data $D \leftarrow \{(s, a, s')_i\}$ Repeat

Fit dynamics model $f_{\phi}(s, a)$ to minimize $\sum_{i} ||f_{\phi}(s_{i}, a_{i}) - s_{i}'||^{2}$ Calculate policy gradient update by backpropagating through dynamics Execute updated policy (1 or more steps), collect data Update dataset $D \leftarrow D \cup \{(s, a, s')\}$

Aalto University School of Electrical Engineering

Tools handle this automatically by automatic differentiation.

Input: base policy $\boldsymbol{\pi}_0$

Run base policy to collect data $D \leftarrow \{(s, a, s')_i\}$

Repeat

Fit dynamics model $f(\mathbf{s}, \mathbf{a})$ to minimize $\sum_{i} ||f(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{s}_{i}'||^{2}$ Use model to plan (e.g. iLQR) actions

Execute first planned action, observe resulting state s '

Update dataset $D \leftarrow D \cup \{(s, a, s')\}$

- Sample efficient.
- Computationally expensive for two reasons.
 - Dynamics fitting costly \rightarrow model may be fitted only periodically (every n steps).
 - Planning costly for long horizons.
- Robust to moderate model errors.
- Choice of regression model is an important design parameter.

Example PILCO (Deisenroth&Rasmussen, 2011)

- Dynamics learning: Use Gaussian process models to include model uncertainty. Known quadratic reward.
- Simulation: Simulate trajectory with learned model, including uncertainty.
- Policy: Radial basis function.
- Policy update: Calculate analytically policy gradient using learned dynamics and optimize with quasi-Newton optimizer (BFGS).
- GP → Very sample efficient. Cannot handle large dataset.

Aalto University School of Electrical Engineering Reward function can also be learned using GP, e.g. BlackDROPS (2017).

- Idea: Learn also regression function for rewards.
- BlackDROPS (2017) uses a Gaussian process to model reward function as well as dynamics.
- Uses CMA-ES (gradient free optimizer) for planning.

Simulate environment to generate additional data: DYNA

Monte Carlo tree search

- Search method for optimal decision making.
- State-of-the-art for playing games (e.g. Alpha Go).
- Iteratively builds a search tree.
- Phases:
 - Selection: Choose a promising node to expand.
 - Expansion: Add a new node.
 - Simulation: Simulate value for new node.
 - Backup: Back-up value to root (update values for parents).

MCTS operation

- From start node *S* choose actions to walk down tree until reaching a leaf node.
- Choose an action and create a child node *N* for that action.
- Perform a random roll-out (take random actions) until end of episode (or for a fixed horizon).
- Record returns as value for *N* and back up value to root.

Node selection in MCTS

- Node selection in search has to balance exploration and exploitation (note difference to RL, here x&x is made only using simulation).
- Idea: Explore when uncertain of outcome.
- Upper confidence bound 1 (UCB1) on trees (UCT).
 - A bound for value of a node (Kocsis&Szepesvari, 2006).

$$Q^{+}(s,a) = Q(s,a) + c \sqrt{\frac{\log N(s)}{N(s,a)}}$$

Positive exploration constant

Visitation count

MCTS simulation phase

- Perform one or several roll-outs from leaf node using random action selection.
- Stop at terminal state or until a discount horizon is reached.
- Estimate value of state as mean return of the *N* simulations: $V(s) = \frac{1}{N} \sum_{i} G_{i}$

MCTS: Example in game playing

• Value number of won games.

Example: Alpha Go (2016)

- Policy learned initially to imitate human players.
- Updated through policy gradient and self-play.

Example: Alpha Go (2016)

- Action chosen by MCTS.
- Action evaluation uses estimated value and a roll-out.

The ideas can also be combined!

Summary

- Model-based RL requires typically less data than valuebased or policy gradient approaches.
- Learned dynamics can be transferred across tasks.
- Potentially suboptimal: models do not optimize for task performance and policy optimization may be prone to local minima.
- Sometimes models are harder to learn than policy.
- Often require explicit choices (e.g. time horizon).

Next: Partial observability and POMDPs

• Next week: Guest lecture!

Afterwards:

- What changes if we cannot observe state directly?
- Reading: Tony Cassandra's on-line tutorial (see MyCourses for details)

