
CHEM-E4235
Transport processes at electrodes and in membranes

Period I, 2021
Professor Lasse Murtomäki
lasse.murtomaki@aalto.fi

Office: C221a



What is needed?

• University calculus
• Basic understanding of (electro)chemistry
• Fundamental chemical thermodynamics
• Problem solving readiness



1. Lecture, text book Chapter 1:
- Substantial derivative and reference speed
- Balance equation
- Dissipation function

2. Lecture, text book p. 38-49: 
- Phenomenological transport equations and dissipation function
- Electrokinetic phenomena (not in the text book)
- Ionic phenomenological equation

3. Lecture, text book p. 50-70:
- Nernst-Planck equation
- Friction coefficient formalism (Stefan-Maxwell)

4. Lecture, text book p. 78 -88:
- Transport at electrodes, using Nernst-Planck equation

Tentative plan of lectures



5. Lecture, text book p. 79-98:
- Some solution of transport problems at steady-state
- Spherical symmetry, ultramicroelectrodes

6. Lecture, text book p. 98-110:
- Hydrodynamic methods

7. Lecture, text book p. 110-122:
- Transient methods

8. Lecture, Introduction to Comsol Multiphysics

9. Lecture, text book p. 126-152:
- Transport across a neutral porous membrane

10. Lecture, text book p. 152-173:
- Donnan equilibrium in ion exchange membranes
- Transport equations in ion exchange membranes

11. Lecture, text book p. 173-204:
- Transport across an ion exchange membrane
- Membrane potentials and selectivity

12. Lecture, text book p. 205-220:
- Porous ion exchange membrane

In addition to the textbook, lecture slides where issues are 
presented in a condensed form.



Three approaches to transport:

- Irreversible thermodynamics and dissipation function (Lars Onsager)

- Friction coefficient formalism (Stefan-Maxwell)

- Nernst-Planck equation (most useful)



Transport processes via Thermodynamics of Irreversible Processes

- An approach developed by Lars Onsager ca. 1930, Nobel Prize in chemistry in 1968
- Later developers, e.g. Rolf Haase, Thermodynamik der irreversiblen Prozesse, 1963;      

Ilya Prigogine, Nobel Prize in Chemistry in 1977 (dissipative structures)
- Based on the 2nd law of Thermodynamics, i.e. entropy production
- Dissipation function  the rate of entropy production > 0

What is entropy?

- Classical interpretation: energy that is changed into a form where the system is no more 
capable of doing work (see next page)

- Statistical interpretation: measure of disorder, S = kBln(W) (Boltzmann)
- Transport processes: dissipation function = force · flux (see later)
- Information theory: average information (expectation value) of a received signal (Shannon 

entropy). Consequence: white noise is the richest in information content.



adiabatic wall

T1, U1 T2, U2

Remove diaphragm
Energy remains the 
same!

UTOT = U1 + U2 UTOT = U1 + U2

T1 > Tfinal > T2

T1 > T2




















2

1

1

final

2

final ln
2
3

lnln
2
3

T
T

R
T

T
T

T
RS

T
dT

CdS v

adiabatic diaphragm

Example of classical interpretation: two ideal gases are mixed

The original system could have done work                                                 .   211 2
1

TTnRTTnR  final



Preparative issues I: components and species

Any identifiable particles in the system (e.g. solution) – ions, molecules, electrons etc. – are called species while components
are those species that can be varied independently in the system. For example, an aqueous solution of acetic acid contains 
species H+, OH–, H2O, CH3COO– (Ac–) and CH3COOH (HAc), but only two components, H2O and HAc. Protons (or H3O+) and 
hydroxyl ions OH– are bound together by the ionic product of water:

14 2[H ][OH ] 10  MwK     at 25 °C
(1.1)

The dissociation (acid) constant of acetic acid couples H+, Ac– and HAc:

M 107378.1
[HAc]

]][Ac[H 5


aK at 25 °C

Additionally, electrolyte systems are bound by the very strong electroneutrality condition:
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Generally, in a system containing N species, bound by m reactions and p other constrains, the number of components is M:

M = N − m − p (1.4)

In the acetic acid case, N = 5, m = 2 and p = 1, hence M = 2. It must be realized that Gibbs-Duhem equation (see later) 
brings yet an extra constrain. 



We use the following notation: subscript 0 denotes for the solvent and species are denoted by subscripts 1, 2, 3,… If the 
species are ions from electrolytes (salts), the following applies: Let us consider, e.g. a mixture of NaCl and CaCl2 and denote the 
concentration of Na+ with c1, that of Ca2+ with c2 and that of Cl− with c3. The concentration NaCl is c13 and that of CaCl2 c23, 
hence, c3 = c13 + 2c23. Yet another important quantity is the mean electrolyte concentration c± and mean activity coefficient g±:
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+ and − are the stoichiometric coefficients of the cation and anion, respectively. To continue with our example, 
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The electrolyte chemical potential is continuous when crossing a phase boundary (at equilibrium):
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where the electrochemical potential of a species is used ( is the Galvani or inner potential of the phase):

 Fziii~ (1.8)

Hence, if the standard chemical potentials are the same in the two phases, the mean activity a± is continuous. Single ion 
activity coefficients cannot be measured but they can be estimated with a convention
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A system is described in terms of a set of independent variables which are chosen in a pragmatic way, i.e. with variables which 
we are able to control. Thermodynamic variables U, H, F, G are state functions, and more importantly, Euler’s homogeneous 
functions of the first order. 

Euler’s homogeneous function of the order n (derivation with only one variable for the sake of simplicity):
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Preparative issues II: Euler’s homogeneous functions

When it is written in textbooks, e.g.


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ii nPVSTUdnPdVTdSdU

this is not an integration (as frequently stated) but the property of the Euler’s homogeneous function.

(1.10)



Preparative issues III: Legendre transforms
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If we want to change V to P as an independent variable, we form a new function, enthalpy, through Legendre transformation:
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Changing S to T in enthalpy gives Gibbs free energy:
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Legendre transform provides the means of creating new state functions from variables of our interest.



Preparative issues IV: Gibbs-Duhem equation

In chemistry, an extra term is included in the thermodynamic state functions to take into account the amount of species:
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(1.15)

where i is the chemical potential of the species i and ni its amount (in moles). Since U is Euler’s homogeneous function of 
the 1st order,
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In terms of calculus, the total differential of U is
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Comparison of (1.10) with (1.12) leads to

0
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i iSdT VdP n d    (1.18)

which is the Gibbs-Duhem equation. Usually chemical processes are carried out at constant T and P (dT = dP = 0), giving the 
more familiar form of

0 or 0i i i i
i i

n d c d     (1.19)

Gibbs-Duhem equation means that, e.g. in a binary system (solvent-solute) there is only one independent component the 
concentration of which can be varied.



We start the analysis of the dissipation function from Gibbs equation (1.15) where we can see that the fundamental 
variables are S, V and ni’s. Interpreting it as a differential it can be seen that
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where s = S/V, u = U/V, ci = ni /V; dV = 0 in an incompressible fluid (e.g. aqueous solution). Now, on the left hand side we 
have the dissipation function in terms of intensive variables; Eq. (1.21) thus provides the starting point for its quest. Eq. 
(1.20) comes into the form of
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The first of these equations can be considered as the definition of temperature. Temperature as such has no meaning for a 
single particle, it can be considered only when a macroscopic limit of the number of particles is reached; that is why it is not
a fundamental variable. On the contrary, even a smallest collection of particles has, indeed, volume and entropy, although 
entropy is not that illustrative quantity (we have no entropy meter) in an every day life. Internal energy, U, includes all the 
modes of molecular motion as well as chemical energy stored in chemical bonds.

Dividing Gibbs equation by V it is obtained:
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Dissipation function



Balance equation

Let’s consider an arbitrary volume V with its surface area S. The change of a general variable B within this volume is, in words

change  = input − output

Hence, if the input to the volume is larger that output the change of B is positive, in terms of calculus, B/t > 0.

source or 
sink, pb
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Sd


S V

Change comes from the difference of the inflow of B into the volume and outflow 
from it, plus the possible production and consumption of B within V (e.g. due to a 
chemical reaction). The flux term is the surface integral over S:
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where      is the flux density of B across the surface and       is a vector pointing 
out perpendicularly from the surface, representing an infinitesimal area dS; 
minus sign comes because a positive scalar product means outflux. pb is positive 
for the net production of B (source) and negative for its net consumption (sink). 
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Next, we apply Gauss’ divergence theorem:
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Hence, the balance equation becomes

(1.25)

where b = B/V. Since the volume V is completely arbitrary, we can ‘divide’ the above equation with V, giving the local form:
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The above balance equation can be considered 
to apply in the fixed laboratory coordinates. But 
what happens if the volume V moves along a 
fluid flow? The situation is analogous depicted 
aside, where the velocity of the person in train 
is 2 m/s with respect to the train, but 11 m/s 
with respect to the fixed coordinates. For this 
case the balance equation can be written in 
terms of the substantial derivative.



The easiest way to derive the substantial derivative of b is to consider it as quantity of three spatial coordinates and time, b = 
b(x,y,z,t). The total differential of b thus is
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As the volume V is moving with the speed                                  , the above equation can be written in the compact form ofkvjvivv zyx
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Noticing that                       , Eq. (1.28) reduces to (               for an incompressible fluid, e.g. water, see p. 13 in the textbook)    vbjj m
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In the equations above, it is customary to use capital D to emphasize the substantial derivative;       is the flux density in the 
mass-average (barycentric) frame of velocity (see Table 1.1, p. 12 in the textbook). The analogy between Eqs. (1.26) and 
(1.29) is obvious. If b is interpreted as the electric charge density,                      , eq. (1.26) becomes
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pe = 0 in electroneutral systems, and electric current density     is independent of the frame of velocity (home exercise). I




Because in an electroneutral system e = 0 it follows that also

For the concentration of species i, ci, the balance equation is 
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The source/sink term pi comes from chemical reactions. In the absence of reactions and at steady-state
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where       is the velocity of the solvent (water). This reference frame is called Hittorf’s reference (Table 1.1). In practice, bary-
centric, Fick’s and Hittorf’s reference frame are the same except in very concentrated solutions (cf. molarity and molality).

Balance equation for entropy density is
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where  is the dissipation function. For internal energy (             in an electroneutral system, see p. 20-21 and Table 1.2)
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Now we are ready to write down the dissipation function due to electrodiffusion. From Eq. (1.21), (1.34) and (1.35):

(1.36)

The ci /t term on the right hand side of (1.36) is given by the textbook equation (1.67). Inserting it in (1.36) gives 

(1.38)
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The entropy flux density is given in the textbook, Eq. (1.65); it is based on the relation .
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Using the electrochemical potential of species i, it can shown (home exercise) that the dissipation function can be written as
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(1.39)

Since we concentrate on the transport processes we bypass the contributions of chemical reactions and viscous forces to 
the dissipation function. Interested reader can refer to the textbook, Chapter 1. 

Dissipation function = flux × force


