
Transport equations via Thermodynamics of Irreversible Processes

All transport processes can be described with the formalism where a flux,   ,  is proportional to a driving force, :

(2.1)

The above equation is known as a phenomenological equation and coefficient L as a phenomenological coefficient. The 
driving force is the negative gradient of an intensive quantity, i.e. flow always takes place ’downhill’. 

Diffusion:

Fick’s 1. law (not a phenomenological equation, see later) (2.2)

Electric current density:

Ohm’s law (2.3)

Heat flux:

Fourier’s law (2.4)

Convection:

Darcy’s law (2.5)

D is the diffusion coefficient, k conductivity, l heat conductance and k filtration coefficient. In thermodynamics transport of 
matter is described – in principle – only via chemical components, but ionic transport equations are usually much simpler to 
handle in practice. If we have only one flux and force, the dissipation function is  q = LX2 > 0    L > 0.
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Velocity is proportional to the slope: v2 > v1. Energy difference is the same in the both cases = mgh. Classical thermodynamics 
concerns energy differences between chemical states but does not tell anything about the velocities.

A naive description: ball rolling downhill

(The example above does not belong to irreversible thermodynamics but to mechanics.)

If it is assumed that the fluxes are functions of forces only,

(2.6)

the linear formulation of the transport equation hints that they are 1st order terms of the Taylor series, and at equilibrium 
where forces are zero fluxes also vanish. This means that the theory should not apply very far from equilibrium. It has been 
proved, however, that when electrodiffusion is concerned that is not a limitation, really.
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In the general case with N fluxes and forces, the problem is best described in a matrix form:
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Onsager’s reciprocal theorem states that Lij  Lji. The dissipation function is written in matrix form as

(2.8)LXXTq

Equation (2.8) is a quadratic form and in order that to be positive, the eigenvalues of L must be positive, which makes 
certain constrains to the phenomenological coefficients (home exercise).

Let’s illustrate this with an example that has a high practical importance and proves the theory correct. Let’s have two forces,
 and P affecting across a charged porous membrane, and two fluxes,   (electric current density) and      (water flux):I
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It is obvious that L11 is the conductivity and L22 the filtration coefficient of the membrane. Yet, Eq. (2.9) claims that the 
pressure gradient causes also electric current and the potential gradient flux of water. This is, indeed, correct: the latter is
known as electroosmosis and the former as streaming current; they are both electrokinetic phenomena. Their  molecular 
origin is the interplay of the electric double layer with the flux of an electrolyte solution. Electroosmosis is actually the basis of 
capillary electrophoresis (CE). According to Onsager





















 011

12

11

21

0 IP

w
pL

L
L
L

I
J




According to Eq. (2.10) the coefficient L12 = L21 can be determined measuring either the electroosmotic flux or streaming 
potential, ; the latter is easier. Electrokinetic phenomena can be linked to the charge density and pore size applying a micros-
copic model, solving simultaneously Navier-Stokes and Poisson-Boltzmann equations in the pore. It is “easily” doable in, e.g. a 
thin capillary with a fixed charge density on its walls. These models are considered in the textbook pp. 205-214.

(2.10)

Streaming potential measurement in a synthetic membrane in 1.0, 10 ja 100 mM NaCl solution. J. Raiman et al., 
”Drug adsorption in human skin: a streaming potential study”, J.Pharm.Sci. 92 (2003) 2366.
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; thickness of the electric double layer; 0 0 /R r l

r0 = pore radius
 = surface charge density of the pore
 = solution viscosity
 = solution relative permittivity (= 0r)
D1, D2 = diffusion coefficients of the cation and anion
I0, I1 = modified Bessel functions of the zeroth and 
first order

I0(x)/I1(x)
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Drug adsorption on bovine and porcine sclera studied with streaming 
potential, Lasse Murtomäki, Tuomas Vainikka, Silvia Pescina, Sara 
Nicoli, J. Pharm. Sci. 102, (2013) 2264-2272.





MPSS = methylprednisolone sodium succinate (anionic)



It has to be realized that the coupling of electric current and water flux does not take place in a solution, but it requires a 
charged membrane with pores of the same order of magnitude as the thickness of the electric double layer. In other words, 
the membrane is a thermodynamic component of the system; we return to this question later on.

But coupling of electrolytes diffusion does take place in a solution. The phenomenological driving force of diffusion is the 
gradient of the chemical potential,

Let’s consider a mixture of two electrolytes with the concentrations c1 and c2. Using Fickian formalism,
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(2.12)

On the diagonal of the diffusion coefficient matrix are the diffusion 
coefficients of the electrolytes with respect to water, and the off-diagonal 
elements are the cross-coefficients. Note that because eq. (2.12) is not a 
phenomenological equation, D12 ≠ D21. 

Aside data from Albright et al. (J. Phys Chem. 93 (1989) 2176-2180) where 
C1 = [NaCl] and C2 = [MgCl2]. As can be seen D21 remains quite small at all 
concentrations whereas D12 is even higher than D11 and D22 at high 
concentrations. In some cases the cross-coefficient has also been found to 
be negative. That is not violating the positive dissipation function as the 
other terms are compensating it.
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It has to be emphasized that writing the transport equation with phenomenological equations,
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does not mean that                              Only in a binary (e.g. water-salt) solution.kikkik cDL 
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The general relation between the phenomenological and the (Fickian) diffusion coefficients is in the textbook eq. (2.52):
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Because the phenomenological coefficients are complicated functions of the local concentrations, they are not practical to 
use: the integration of                          is not possible without explicit information of the dependence of L11 or 1 on c1. On the 
contrary, D1 can assumed to be constant (at least within a reasonable range of c1) which makes the integration of 

rather simple. The value of the phenomenological approach is, however, in the notice that, in general, fluxes 
are coupled, giving the explanation to, e.g. electrokinetic or thermoelectric phenomena (Peltier, Seebeck effects).

1111  LJ


111 cDJ 




Ionic phenomenological equations can be defined in an analogous manner:
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Note that instead of the chemical potential  the electrochemical potential     is used. In the textbook pp. 40-41 it is shown 
that when the flux is expressed in the Hittorf reference the dissipation function takes the form
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But as mentioned earlier, in moderately dilute solutions all the reference frames are practically the same and we omit their 
superscripts. Let’s consider a binary solution, i.e. one salt and a solvent (water). An electrolyte A1B2 is assumed to be 
dissociated completely to ions Az1 and Bz2. Electroneutrality thus requires that z11 + z22 = 0. The dissipation function is
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and the phenomenological equations are
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The dissipation function can also be written as
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where ohm is the ohmic part of the Galvani potential in the solution (will be discussed later on).



The phenomenological equations related to Eq. (2.20) are
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As shown on the textbook p. 43, the equivalence of the dissipation function requires that L12, = 0. Hence, the component 
presentation takes the form





k


ohm

1212,1212

I
LJ




(2.22)

where the conductivity                                                                . This exercise of calculus proves the intuitively evident fact that 
the flux of a neutral component cannot depend on the ohmic potential gradient, neither electric current can depend on the 
chemical potential (concentration) gradient of a neutral component.
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Fickian approach
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where ik is the stoichiometric coefficient of ion i in component K and ti is its transport number. Transport number is the 
fraction of current carried by ion i. 

Strictly speaking, only components can diffuse and ions carry current. Ionic fluxes can be expressed in terms of component 
fluxes and electric current as

Example: KCl-HCl, K+ = “1”, H+ = “2”, Cl− = “3”; KCl = “13”, HCl = “23”.
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Inserting the component fluxes in Fickian format the flux is given as
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The above equation is, however, rather impractical because in multicomponent solutions the transport numbers depend on 
the local composition of the solution, and because the cross-diffusion coefficients and their concentration dependence are 
usually not known. Only in a binary solution transport numbers are constant, and we get
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For the diffusion of neutral (zi = 0) solutes the coupling of fluxes is very weak, and the flux is well described with the Fick’s law
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The practical way of analyzing ionic transport is via the Nernst-Planck approximation to which we will concentrate next.
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Example: KCl, K+ = “1”, Cl− = “2”; KCl = “12”.


