
Nernst-Planck equation
The main problem of the previous approaches is that it is very difficult to estimate the coupling between ionic fluxes. In the 
Nernst-Planck approximation it is assumed that
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This seems to mean that the fluxes are decoupled but due to the electroneutrality condition and the definition of electric 
current density,
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there is strong coupling. Hence, writing the ionic phenomenological equation and expanding the electrochemical potential,
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and introducing the phenomenological coefficient 
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we reach the Nernst-Planck equation:
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Above equation applies in the Hittorf reference frame or, in the absence of convection, in the fixed laboratory coordinates.
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If there is convection in the system (e.g. solution flow across a membrane), we add the corresponding term:
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(3.5)
diffusion migration convection

Ionic flux thus depends on three factors: diffusion due to the concentration gradient (Fick’s law), migration (electrophoresis) 
due to the potential gradient and convection due to the solvent flow (pumping, stirring). It has to be realized that the 
convection term does not originate from the gradient of the electrochemical potential but due to mechanical forces. It merely
makes the connection between the reference frames. Solvent flow due to the gradient of the chemical potential of the 
solvent – i.e. osmosis – is possible but that requires an osmotic membrane that does not (in principle) allow any solute flow.

Let’s multiply Eq. (3.5) by zi and sum over all the species:
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The first observation is that the last term is zero due to electroneutrality, i.e. convection has no contribution to electric 
current. Solving  from above, it is obtained

(3.7)



In Eq. (3.7) we have used the conductivity of the solution
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and the transport number of an ion i:
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Eq. (3.7) has a very deep message. Potential drop in the system has an irreversible contribution, ohmic loss,           , and a 
reversible part, diffusion potential. In the absence of concentration gradients, we can write the Ohm’s law               and the 
dissipation function                                             that is known as Joule heat. Although electric current were zero, ionic fluxes 
exist due to diffusion potential, but the fluxes of cationic and anionic species must balance each other so that electro-
neutrality is maintained. Ohmic potential drop always comes from an external source and diffusion potential is an internal 
property, arising from the differences between the ionic mobilities (see eq. (2.88) in the textbook). Therefore, diffusion 
potential usually is rather low, unless a system includes ions with significantly high mobility, such as H+ or OH−, or very large 
ions with low mobility.

As explained in detail on p. 54 of the textbook, the difference between ionic migration and conduction is that the former 
takes place due to the total potential gradient, including both the ohmic and diffusion potential, while the latter comes only 
from the external source (current). When we carry out an electrochemical experiment, we wish to have control over the 
electrode potential but, in practice, the voltage we apply between the electrodes is partly consumed in the ohmic loss and 
diffusion potential. In the light of Eq. (3.7) and (3.9) it is obvious that increasing the solution conductivity , we can reduce 
these losses. These leads us to the concept of a supporting electrolyte and a trace-ion to which we return later on.
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The analysis of a binary system is useful in revealing some important aspects of ionic transport. Let’s consider again an 
electrolyte Au1

Bu2
dissociating completely to ions Az1 and Bz2. Hence, c1 = u1c12 and c2 = u2c12 where c12 is the electrolyte 

concentration. Electroneutrality reads u1z1 + u2z2 = 0. Let’s write the Nernst-Planck equations for the both species:
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Summing above equations gives
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Realizing that                                    it is obtained after some algebra that  2112 / zjzFIj
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Identifying the following groups of variables,
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we can write the transport equation as earlier presented in the Fickian approach:
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Eq. (3.13) is known as the Nernst-Hartley equation, and D12 is the diffusion coefficient of the electrolyte. It shows that an ion 
cannot diffuse by itself, but it is coupled to a counter-ion. This is true also in a multicomponent system although the equations 
become very complicated. That is also the reason why single ionic mobilities cannot be measured from the conductance data 
of electrolytes (home exercise). Instead, looking at D12 and the transport number t1 that are both measurable quantities,
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Example: The diffusion coefficient of H+ is 9.31·10−5 cm2/s, that of Cl− 2.03·10−5 cm2/s and that of SO4
2− 1.06·10−5 cm2/s. From 

the Nernst-Hartley equation, the diffusion coefficient of HCl is 3.33·10−5 cm2/s and that of H2SO4 2.59·10−5 cm2/s. This shows 
that these anions slow down the transfer of H+, while H+ is accelerating the transfer of the slower anions. This is exactly the 
effect of diffusion potential, reflected in the values of the electrolyte diffusion coefficients.

Due to inherent coupling of ionic fluxes via long-range electrostatic interactions the Nernst-Planck equation works very nicely,
except in very concentrated solutions. In very concentrated solutions ion-ion interactions become more important, which 
requires another approach.



At steady-state, the flux of a species                  across a

surface S is constant (in 1D calculations also the flux 
density       is constant). That does not apply to ions of 
weak electrolytes, because their degree of dissociation 
varies along the concentration profile; only the fluxes of 
ion constituents are constant. A Comsol model of this 
situation is presented aside. On the left, 0.5 M Na2SO4, on 
the right, 0.5 M H2SO4. Current density 50 mA/cm² (from 
left to right). Positive flux means flow from left to right 
(negative naturally vice verse).

Weak electrolytes
Transport of weak electrolytes has an extra issue to take into account. Consider H2SO4: the first proton dissociates 
completely, making a bisulfate anion. Since pKa of bisulfate is ca. 2, at pH < 2 it remains as bisulfate and at pH > 2 it 
dissociates to sulfate and another proton. Instead of calculating (if even possible!) the fluxes of bisulfate and sulfate 
separately, the only meaningful quantity is their sum, the flux of sulfate constituent. Protons are transferring as free 
protons and as bisulfate and, analogously, the only meaningful quantity is the sum of their fluxes, the flux of proton 
constituent.
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Concentration profiles of all the ions in the previously 
mentioned system.

The total sodium flux is constant, as it should, but the 
individual flux components in the Nernst-Planck equation 
vary as a function of position.

Although the ionic fluxes are not constant, the definition of the electric current density (eq. (2.24) or (3.6)) still applies. As the 
constituent fluxes are constant, it is possible to express the current density in their terms:
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Stefan-Maxwell (friction coefficient) approach
In concentrated solutions the most natural approach is to consider the interactions between all species in the solution. When
a solute is transferring through a solution it collides with solvent molecules and other solutes, causing friction to its transfer. 
The frictional force depends on the strength of the interaction, characterized with a friction coefficient K'ij, the number of 
collisions, viz the number of particles (like in the kinetic gas theory), expressed in mole fractions, and the relative speed of the 
colliding particles. At steady-state, the driving force of transfer is equal but opposite to the friction forces:

driving force + frictional force = 0

If we consider diffusion, the driving force could be the concentration gradient, leading to
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We can develop further the left hand side:
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In order to proceed, let’s consider first the simplest case, a binary solution. From eq. (3.19),
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where the solvent mole fraction x0 and RT are included in K10.



In the Hittorf reference frame the solute flux is expressed as
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The above equation introduces the Stefan-Maxwell diffusion coefficient
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At moderately dilute solutions x0 ≈ 1 and 1 ≈ RTlnc1 = RT(c1/c1). Hence,
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At moderately dilute solutions the Fickian (D1) and Stefan-Maxwell diffusion coefficients thus are equal but differ at high 
concentrations significantly. For a spherical particle the Stokes’ law gives the friction coefficient as K10 ≈ 6pR1hNAc1, leading to
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where R1 is the particle radius and NA the Avogadro’s number. Although Stokes’ law was derived for macroscopic particles 
it works surprisingly well also to molecules and ions (but not for ions in water, see next page).



Validity of Stokes’ law for K+ () and Cs+ () in various solvents. 
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Considering a binary electrolyte solution where a salt dissociates into u1 cations with the charge number z1 and u2 anions with 
the charge number z2 (u1z1 + u2z2 = 0), the transport equations become
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Also here Onsager’s reciprocal theorem applies, Kij = Kji. Electric current density (in Hittorf reference) is
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The above equation resembles the Nernst-Planck equation with the exception of the activity coefficient correction
. As the plot in the following page shows, this correction term can reach up to ca. 10% significance in the 

case of NaCl in water. In principle, this correction could be imposed also in the Nernst-Planck equation.
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Eq. (3.26) once again shows that electric current is independent of the reference velocity (here     ). In the absence of current
In that case the flux becomes straight from eq. (3.20), replacing.21 vv
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In the case of pure conduction, in the absence of concentration 
gradients, the equations are
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This pair of equations can be treated as follows:
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Subtracting eqs. (3.29) from each other gives (note Onsager’s theorem)
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Solving    in the form of Ohm’s law,                     the conductivity  is reached as (textbook eq. (2.147))I
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An interesting example is ionic liquids, i.e. solvents that are formed from cations and anions. In that case the solvent is also a 
charge carrier and dissolving any electrolyte in an ionic liquid makes the system at least ternary, more often quaternary. The 
transport of an electrolyte in an ionic liquid is hardly described with the Nernst-Planck equation or Fick’s laws. Only when the
concentration of an electrolyte is very low compared with the ionic liquid these approaches can be applied (with care).

In the case of an ionic liquid alone, no concentration gradients can exist, and the only possible transport process is electric 
conduction:
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In the presence of both concentration gradients and electric current the textbook presents the appropriate equations, 
(2.150) – (2.158), pp. 68-69.

Note that these equations are actually identical because z2c2 = −z1c1 and K12 = K21. From either of these equations it is 
obtained:
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Hence, the only difference to the Nernst-Planck equation is the Stefan-Maxwell diffusion coefficient. Measuring the 
conductivity of an ionic liquid the friction coefficient K12 and        can be determined.12D
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where Mij and vij are the molar mass and molar volume of the electrolyte, respectively. Only at the limit c3 « c2 the transport 
equation of Cl−reduce to the form of Fick’s law (or Nernst-Planck with electric current), and D3 takes the form

The problem of the Stefan-Maxwell formalism is obvious: the values of the friction coefficients are merely unknown. Yet, it is 
the most appropriate approach as it considers all the interactions in the solution. It is clear that the treatment of multi-ionic 
systems becomes extremely difficult. Therefore, the Nernst-Planck equation has received the major role in the study of ionic 
transport. Stefan-Maxwell approach is used in modelling the transport of, e.g. mixtures of hydrocarbons in petrochemical 
industry. 

* T. Vainikka et al. Electrochimica Acta 87 (2013) 739-748.

If we have an ionic liquid A+B− (c12) and an electrolyte A+Cl−(c13), the following expression can be derived after lengthy 
algebra*
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