
Let’s consider the deposition of Cu2+ from the solution of CuCl2 and HCl. Let’s define: 

[CuCl2] = 13
bc  and [HCl] = 23

bc . 

Hence: [Cu2+] = 1c , [H+] = 2c  and [Cl−] = 3c . When 13 23
b bc c , Cu2+ is a trace ion and the limiting current 

density is given as [1] 
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where  is the thickness of the diffusion boundary layer. When only species 1 is reactive at the 
electrode the Nernst-Planck equations are (1D case) [1]: 
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where f = F/RT. From eq. (3), the concentration profile can be integrated as 
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where  is the potential drop in the diffusion boundary layer. It can be show [1] that the current 
density is given as: 
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Applying the above equation to our case, it is obtained that 
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At the limiting current c1(0) = 0, which means via electroneutrality that c2(0) = c3(0). Using eq. (4): 
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Inserting this to eq. (6), the limiting current density is given as 
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(6) 

because   2 23 3 13 23 and 2 .b b b b bc c c c c  Modifying further: 
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In the limiting case r   the system is binary (only CuCl2) the limiting current density is  
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For the trace case, eq. (6) is better to write as follows:  
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When r  0,   2 1 1r r  which then recovers eq. (1) as expected. For computer simulations, the 

following form is useful 
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The surface concentration of H+ and Cl− can be calculated from eq. (4) and that of Cu2+ from the 
electroneutrality condition  1 2 32 .c c c  The electrode potential can then be calculated from the 

Nernst equation as 
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where c* is the standard concentration 1.0 M. The total potential is E –  because we defined  as 
b – (0) but the electrode potential is defined electrode – solution. Hence, giving values for  < L the full 
current-voltage can be simulated. 

 

Left: Potential drop in the diffusion double layer; r = 100 (green), 10 (cyan), 1 (yellow), 0.1 (orange), 
0.01 (blue). Right: Current-voltage curves; color code the same. 
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