
Transport at electrodes
The rate of an electrode reaction, r (mol cm−2 s−1), is expressed via the Faraday law:
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where I is the current density, n the number of electrons exchanged in the reaction and F the Faraday constant. Reaction rate 
is a scalar quantity but electric current is a vector. Coupling these two quantities of different tensorial degree takes place via 
the mass balance only at the electrode surface. Because r is always positive, I and n must have the same sign, i.e. for 
oxidation, according to the IUPAC convention, I and n > 0 and for reduction I and n < 0.

Current is carried by all ions in the solution according to their transport numbers but at the electrode only those ions which 
participate in the electrode reaction are charge carriers. Yet another issue worth noticing is that only the flux component 
normal to the surface is counted as an electric current. In the case of Cu2+ reduction to metallic copper,
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where    is the unit vector normal to the surface. Keeping this in mind, the flux of an electroactive species at the electrode isn

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Let’s consider the reaction                                                  , and denote ferricyanide (Fe3+) as species 1 and ferrocyanide (Fe2+) as 
species 2. The reaction is reduction, thus I < 0; −1 = 2 = 1, and n = −1; z1 = −3 and z2 = −4. Therefore, n = z2 − z1. Current 
density can also be written as I = F(z1 j1 + z2 j2). The only way this agrees with Eq. (4.3) is that j1 = −j2 < 0, minus sign indicating 
that the direction of j1 is opposite to that of j2 along the surface normal.
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This example reveals a feature which may look self-evident: unless adsorption takes place at the electrode surface, the fluxes 
of the reactants and products must be the same but opposite in direction. But if we consider a reaction of a chloro complex 
MCl2 + 2e− → M0 + 2Cl− the situation is not that clear. Chloride anions released in the reaction must be transported away from 
the electrode surface, in order to maintain local electroneutrality. Therefore,                                        , although Cl− is not as 
such an electroactive species. Those species that do not participate electrode reactions have zero flux at the surface of an 
electrode which gives a useful boundary condition for their transport equations.

The notation in the textbook is such that the electrode surface resides at x = 0 (r = a at spherical electrodes*) and a solution 
extends to x > 0 (r > a). The Galvani potential at the electrode surface is f(0) = fs and in the bulk solution fb; Df = fb − fs. For 
oxidation Df < 0 and for reduction Df > 0. Note that fs is not the electrode potential. Electrode potential is E = fM − fs where 
fM is the potential of an electron in the Fermi level of an electrode (metal) and is expressed via the Nernst equation (at 
equilibrium). 
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*Here r is not the reaction rate but the spatial coordinate in spherical geometry.



Transport at electrodes at steady-state
When electric current flows concentrations at the electrode surface change 
due to the electrode reactions; reaction rate is coupled to mass transfer as 
discussed above. At steady-state, in the absence of chemical reactions, 
−(ci /t) = ∙ji = 0. A true steady-state can be achieved only by stirring the 
solution (an exception is found in spherical geometry that is discussed later 
on). Yet, there always remains an unstirred layer close to the surface. Its 
thickness d depends on the viscosity of the solution and the type of stirring. 
In aqueous solutions the thickness of the unstirred layer typically is 1 - 10 
mm, depending on the geometry and stirring rate. In the absence of stirring, 
natural convection may take place at the electrode due to the changes in 
the solution density (i.e. partial molar volumes). Also in this case an 
unstirred layer is formed; its thickness is of the order of 50 - 100 mm.
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When the solution is stirred the situation is something like what is depicted in the picture above. At the electrode the solution 
velocity is zero but increases towards the bulk of the solution (green line) with a manner that depends on the stirring method. 
The concentration profile (blue line) may develop much faster to its bulk value, cb. The thickness of the boundary layer is 
defined as depicted but it is only a thought, virtual definition, because we cannot measure it. Therefore, it is eliminated from
the solution of the transport problem with the measurable limiting current, as explained shortly, and assuming that in the 
region 0 < x < d there is no convection. In order to fully utilize stirring we have to resort to methods where the velocity profile 
can be explicitly known; a stirrer bar or a paddle does not create a well-defined velocity profile.



According to the Nernst-Planck equation, the flux of a species consists of diffusion, migration and convection contributions. It
was assumed that within 0 < x < d there is no convection but even if d were zero, v = 0 at x = 0, which is known as the non-slip 
condition. We also saw (Eqs. (3.7) – (3.9)) that adding a sufficient amount of an inert, non-electroactive electrolyte in the 
solution, the Galvani potential gradient can be made insignificantly small. In that case, the transport of an electroactive 
species has only the diffusion contribution: ji = −Dici . In linear geometry the flux density ji does not depend on the location,  
ji ≠ ji (x), which means that dci /dx = constant. In a more quantitative manner, assuming a constant diffusion coefficient,
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where the boundary conditions ci (0) = cs and ci (d) = cb are used. Electric current density thus becomes
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The lowest value that the surface concentration can take is naturally zero, which gives the highest possible current density,
the limiting current density,
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The above equation applies to a trace-ion the concentration, which is ca. 1-2% of the concentration of the supporting 
electrolyte, making its migration contribution insignificantly small. The motivation of using trace-ions is obvious: calculus 
remains relatively simple. Therefore, most of electrochemical experiments are carried out adding a supporting electrolyte. 
In industrial electrolysis that is, however, not the case and we have to consider it later on.



Using Eq. (4.6) the bulk concentration can be written as                          and inserting this into (4.5) leads to a very useful form, 
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Eq. (4.7) has only measurable quantities without need to know, e.g. the thickness of the diffusion boundary layer, d. There 
are naturally electrochemical means of determining Di, hence d can be calculated (if needed) from the above expression of 
the bulk concentration.

If there is only one electroactive species that is denoted as species 1, it carries all the current at steady-state, i.e. I = z1Fj1. In 
this case the limiting current density can be written as

Binary solution

Let’s consider a binary solution of CuCl2 where Cu2+ is reduced to metallic copper; [Cu2+] = c1 = c12 and [Cl−] = c2 = 2c12. We 
learnt earlier that the Nernst-Planck equation can be written in the following form:
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Eq. (4.9) is easy to integrate using the boundary condition c12(d) = c12
b . The result is
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where the Nernst-Hartley equation (3.13) and the transport number, Eq. (3.14) have been used. The limiting current density 
now becomes
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which is thrice that of a trace-ion. This phenomenon is known as the supporting electrolyte paradox: although adding a 
supporting electrolyte increases the conductivity of the solution, the limiting current decreases. The reason is that in a 
binary case the transport of Cu2+ still has the migration contribution that enhances its flux, consequently increasing the 
limiting current.

It is also worth noticing that, because of electroneutrality, the concentration profile of Cl− follows the profile of Cu2+. This 
means that close to the limiting current, conductivity of the solution at the electrode is very low because the concentration
of CuCl2 is close to zero, causing an extra potential drop in the solution. If we write down the Nernst-Planck equation of Cl−:

 fD







fffD

f





 f



feII
I
I

F
RT

c
c

F
RT

cd
f

d
dx
d

fc
dx
dc

Dj

11lnln

ln
1

0

L
L

b
12

s
12sb

122
2

22

(4.12)



In the figure aside the current-voltage curve is simulated for the 
Cu2+ deposition. In the case of the binary solution the potential 
values include also Df while in the trace case only Nernst 
equation is used: 
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where c* is the standard concentration, 1 mol/L and c1
b = c*.

Based on the figure above, it is obvious that an industrial process cannot be run too close to the limiting current because 
potential losses increase substantially. 
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Multicomponent system, one electroactive species
The electroactive species is denoted by subscript 1, hence I = z1Fj1. The fluxes of all the other species is zero at steady-state. 
From their Nernst-Planck equation, integration from x to d gives
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The surface concentration of the non-electroactive species thus is                        . From electroneutrality,fD fz
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Summing (ji /Di) gives
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where cT is the total ionic concentration and electroneutrality is used. Eq. (4.16) can be integrated from x = 0 to x = d with 
the help of Eqs. (4.14) and (4.15):
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Current can also be expressed in the form of Ohm’s law I = −kefff where the effective conductivity keff can be calculated as 
follows:
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Note that keff includes D1 only because the other species do not move at steady-state. Let’s continue with the CuCl2 example 
adding NaCl as the supporting electrolyte. Cu2+ is species 1, Na+ species 2 and Cl− species 3. Therefore, [CuCl2] = c13 and [NaCl]
= c23. Furthermore,                                                                                          From Eq. (4.17):.2  and,2,, 321
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At limiting current c1(0) = 0 and electroneutrality states that c2(0) = c3(0). Applying Eq. (4.14),
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Inserting (4.20) into (4.19), the limiting current density is obtained after some algebra as
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Trace-ion case is obtained when                   . In that case                                                and the limiting current density becomesb
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Binary case is reached by setting :0b
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From Eqs. (4.19) and (4.21),
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Eq. (4.25) is perhaps the simplest way to study the potential drop in the diffusion boundary layer.



Comsol simulation of Zn2+ electrodeposition: E° = -0.7626 V, [ZnSO4] = 1.0 M, [H2SO4] is 
varied. k° = 7.5∙10-7 cm/s.


